Answer on Question #58327 – Math – Trigonometry

Question

1. Fill in the blank. In the triangle below, z° =

Solution

The first angle equals 42° , the next angle is 90° , and the third angle equals z° .

The sum of interior angles of any triangle is equal to 180° :

 $42^{\circ} + 90^{\circ} + z^{\circ} = 180^{\circ}$,

hence

$$z^{\circ} = 180^{\circ} - 42^{\circ} - 90^{\circ} = 180^{\circ} - 132^{\circ} = 48^{\circ}.$$

ANSWER: $z^{\circ} = 48^{\circ}$.

Question

2. Fill in the blank. In the triangle below, x = _____. Round your answer to two decimal places.

Solution

First of all, let's find z° , and then we can use a value of $tan(z^{\circ})$ to obtain x.

$$z^{\circ} = 180^{\circ} - 52^{\circ} - 90^{\circ} = 38^{\circ},$$

 $\tan(38^{\circ}) = \frac{35}{x},$

hence

$$x = \frac{35}{\tan(38^\circ)} = \frac{35}{0.7812856265} \approx 44.80.$$

ANSWER: $x \approx 44.80$

Question

3. Fill in the blank. In the triangle below, y = _____. Round your answer to two decimal places.

Solution

In part 2 we have already found $z^{\circ} = 38^{\circ}$ and x = 44.80.

Now, in order to calculate the value of y, we shall use the Pythagorean theorem ($a^2 + b^2 = c^2$):

$$y^2 = x^2 + 35^2 = 44.80^2 + 35^2,$$

hence

$$y = \sqrt{44.80^2 + 35^2}.$$

ANSWER: $y \approx 56.85$.

www.AssignmentExpert.com