Answer on Question \#58283 - Math - Complex Analysis

The polar form of the complex number

$$
z=x+i y
$$

is given by

Solution:

The polar form of the complex number \mathbf{z} is

$$
z=r(\cos \varphi+i \sin \varphi)
$$

where
$r=|z|=\sqrt{x^{2}+y^{2}}$ is the absolute value of the complex number z
and
$\varphi=\arg (\mathrm{z})$ is the argument of the complex number z:

$$
\varphi=\arg (x+i y)= \begin{cases}\arctan \left(\frac{y}{x}\right) & \text { if } x>0 \\ \pi+\arctan \left(\frac{y}{x}\right) & \text { if } x<0 \text { and } y \geq 0 \\ -\pi+\arctan \left(\frac{y}{x}\right) & \text { if } x<0 \text { and } y<0 \\ \frac{\pi}{2} & \text { if } x=0 \text { and } y>0 \\ -\frac{\pi}{2} & \text { if } x=0 \text { and } y<0 \\ \text { indeterminate } & \text { if } x=0 \text { and } y=0\end{cases}
$$

Answer: $\quad z=\sqrt{x^{2}+y^{2}}(\cos [\arg (x+i y)]+i \sin [\arg (x+i y)])$

