Answer on Question \#58207 - Math - Differential Equations

Question

Determine whether the following PDE can be reduced to a set of two ODEs by the method of separation of variables.
i) $d^{\wedge} 2 u / d x^{\wedge} 2+d^{\wedge} 2 u / d y^{\wedge} 2=x$

Solution

i) Let

$$
u(x, y)=X(x) Y(y)
$$

Then,

$$
\frac{\partial^{2} u}{\partial x^{2}}=Y \frac{d^{2} X}{d x^{2}}=Y X^{\prime \prime} ; \quad \frac{\partial^{2} u}{\partial \mathrm{y}^{2}}=X \frac{d^{2} Y}{d y^{2}}=X \ddot{Y}
$$

Now,
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=x$
can be rewritten in the following form:

$$
\begin{gathered}
Y \frac{d^{2} X}{d x^{2}}+X \frac{d^{2} Y}{d y^{2}}=x \\
\frac{Y \frac{d^{2} X}{d x^{2}}}{X Y}+\frac{X \frac{d^{2} Y}{d y^{2}}}{X Y}=\frac{x}{X Y} \\
\frac{\frac{d^{2} X}{d x^{2}}}{X}+\frac{\frac{d^{2} Y}{d y^{2}}}{Y}=\frac{x}{X Y} \\
\frac{X^{\prime \prime}}{X}+\frac{\ddot{Y}}{Y}=\frac{x}{X Y}
\end{gathered}
$$

We cannot reduce $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=x$ to a set of two ODEs by the method of separation of variables.

Answer: No.

Question

Determine whether the following PDE can be reduced to a set of two ODEs by the method of separation of variables.
ii) $x d^{\wedge} 2 u / d x^{\wedge} 2+t d u / d t=0$

Solution

ii) Let $u(x, t)=X(x) T(t)$. Then,

$$
\frac{\partial^{2} u}{\partial x^{2}}=T \frac{d^{2} X}{d x^{2}}=X^{\prime \prime} \cdot T ; \quad \frac{\partial u}{\partial t}=X \frac{d T}{d t}=X \cdot \dot{T}
$$

Now,
$x \frac{\partial^{2} u}{\partial x^{2}}+t \frac{\partial u}{\partial t}=0$
can be rewritten in the following form:

$$
\begin{gathered}
x T \frac{d^{2} X}{d x^{2}}+t X \frac{d T}{d t}=0, \\
\frac{x T \frac{d^{2} X}{d x^{2}}}{X T}+\frac{t x \frac{d T}{d t}}{X T}=0, \\
\frac{x \frac{d^{2} X}{d x^{2}}}{X}+\frac{t \frac{d T}{d t}}{T}=0, \\
\frac{x \frac{d^{2} X}{d x^{2}}}{X}=-\frac{t \frac{d T}{d t}}{T} \\
\frac{x X^{\prime \prime}}{X}=-\frac{t \dot{T}}{T}
\end{gathered}
$$

The left-hand side is the function of x and the right-hand side is the function of t, therefore, now both sides must be constant, so we set

$$
\frac{x X^{\prime \prime}}{X}=-\frac{t \dot{T}}{T}=-\lambda
$$

From these we get the ordinary differential equations:

$$
\begin{gathered}
\frac{x X^{\prime \prime}}{X}=-\lambda \\
\frac{t \dot{T}}{T}=\lambda
\end{gathered}
$$

that is,

$$
\begin{gathered}
x X^{\prime \prime}+\lambda X=0 \\
t \dot{T}-\lambda T=0
\end{gathered}
$$

We can reduce $x \frac{\partial^{2} u}{\partial x^{2}}+t \frac{\partial u}{\partial t}=0$ to a set of two ODEs by the method of separation of variables.
Answer: Yes.

