Answer on Question \#58204 - Math - Differential Equations

Question

1. a) Solve the following ordinary differential equation:
i) $1 / x \sin y d x+[(\ln x)(\cos y)+y)] d y=0$

Solution

$$
\frac{\sin y}{x} d x+(\ln x \cos y+y) d y=0
$$

Let us split the left-hand side of equation into two parts

$$
\left(\frac{\sin y}{x} d x+\ln x \cos y d y\right)+y d y=0
$$

In the first part

$$
\frac{\sin y}{x} d x=\sin y d(\ln x)
$$

and

$$
\begin{gathered}
\ln x \cos y d y=\ln x d(\sin y) \\
\left(\frac{\sin y}{x} d x+\ln x \cos y d y\right)+y d y=(\sin y \cdot d(\ln x)+\ln x \cdot d(\sin y))+y d y \\
=d(\sin y \cdot \ln x)+y d y=0
\end{gathered}
$$

We integrate the last expression and get

$$
\ln x \cdot \sin y+\frac{y^{2}}{2}=C
$$

where C is an arbitrary real constant.
Answer: $\ln x \cdot \sin y+\frac{y^{2}}{2}=C$.

Question

1. a) Solve the following ordinary differential equation:
ii) $d^{\wedge} 2 y / d x^{\wedge} 2+d y / d x-12 y=4 e^{\wedge} 2 x$

Solution

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-12 y=4 e^{2 x}
$$

Let us find a solution in the form of

$$
y=e^{\mu x}
$$

First we solve the homogeneous equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-12 y=0
$$

which has the characteristic equation

$$
\mu^{2}+\mu-12=0
$$

Applying Vieta's formula we get $\mu=3$ or $\mu=-4$.
Solution to the homogeneous equation is $y_{h}=C e^{3 x}+D e^{-4 x}$.
Now, find a particular solution to non-homogeneous equation in the form of

$$
\begin{gathered}
y_{p}=\alpha e^{2 x} \\
\frac{d^{2} y_{p}}{d x^{2}}+\frac{d y_{p}}{d x}-12 y_{p}=4 e^{2 x}
\end{gathered}
$$

$$
\begin{aligned}
& \qquad \qquad \frac{d^{2}}{d x^{2}}\left(\alpha e^{2 x}\right)+\frac{d}{d x}\left(\alpha e^{2 x}\right)-12\left(\alpha e^{2 x}\right)=4 e^{2 x} \\
& 4 \alpha e^{2 x}+2 \alpha e^{2 x}-12 e^{2 x}=4 e^{2 x} \\
& 4 \alpha+2 \alpha-12=4 \rightarrow 6 \alpha=16 \rightarrow \alpha=\frac{16}{6}=\frac{8}{3} \\
& \text { hence } \\
& \qquad y_{p}=\frac{8}{3} e^{2 x}
\end{aligned}
$$

and the general solution is

$$
y=y_{h}+y_{p}=C e^{3 x}+D e^{-4 x}+\frac{8}{3} e^{2 x}
$$

Answer: $y=C e^{3 x}+D e^{-4 x}+\frac{8}{3} e^{2 x}$.

Question

b) Solve the initial value problem:
$d^{\wedge} 2 y / d x^{\wedge} 2+2(d y / d x)+2 y=0, y(0)=2, y^{\prime}(0)=1$

Solution

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=0 \\
y(0)=2 \\
y^{\prime}(0)=1
\end{gathered}
$$

Let us find a solution in the form of

$$
y=e^{\mu x}
$$

An homogeneous equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=0
$$

has a characteristic equation

$$
\mu^{2}+2 \mu+2=0
$$

Applying Vieta's formula we get $\mu=-1+i$ or $\mu=-1-i$.
Solution to homogeneous equation is $y=C e^{-x} \sin x+D e^{-x} \cos x$
To meet the initial conditions

$$
\begin{gathered}
y(0)=2 \\
y^{\prime}(0)=1
\end{gathered}
$$

consider

$$
\begin{aligned}
& y(0)=2=C e^{-0} \sin 0+D e^{-0} \cos 0=0+D=D \rightarrow D=2 \\
& y^{\prime}(0)=1=-C e^{-0} \sin 0+C e^{-0} \cos 0+D e^{-0} \cos 0-D e^{-0} \sin 0=0+C+D=C+2=1 \\
& \rightarrow C=-1
\end{aligned}
$$

Answer: $y=-e^{-x} \sin x+2 e^{-x} \cos x$.

