Answer on Question #58204 - Math - Differential Equations

Question

1. a) Solve the following ordinary differential equation:

i) $1/x \sin y dx + [(\ln x)(\cos y) + y)] dy = 0$

Solution

$$\frac{\sin y}{\cos x}dx + (\ln x \cos y + y)dy = 0$$

Let us split the left-hand side of equation into two parts

$$\left(\frac{\sin y}{x}dx + \ln x \cos y dy\right) + y dy = 0$$

In the first part

$$\frac{\sin y}{x}dx = \sin y d(\ln x)$$

and

$$lnxcosydy = lnxd(siny)$$

$$\left(\frac{\sin y}{x}dx + \ln x \cos y dy\right) + y dy = (\sin y \cdot d(\ln x) + \ln x \cdot d(\sin y)) + y dy$$
$$= d(\sin y \cdot \ln x) + y dy = 0$$

We integrate the last expression and get

$$lnx \cdot siny + \frac{y^2}{2} = C_2$$

where C is an arbitrary real constant.

Answer:
$$lnx \cdot siny + \frac{y^2}{2} = C$$
.

Question

1. a) Solve the following ordinary differential equation: **ii)** $d^2 y / dx^2 + dy/dx - 12y = 4e^2x$

Solution

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 12y = 4e^{2x}$$

Let us find a solution in the form of

 $y = e^{\mu x}$ First we solve the homogeneous equation

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 12y = 0$$

which has the characteristic equation $\frac{1}{dx^2}$

 $\mu^2 + \mu - 12 = 0$ Applying Vieta's formula we get $\mu = 3$ or $\mu = -4$.

Solution to the homogeneous equation is $y_h = Ce^{3x} + De^{-4x}$. Now, find a particular solution to non-homogeneous equation in the form of

d

$$y_p = \alpha e^{2x}$$
$$\frac{d^2 y_p}{dx^2} + \frac{dy_p}{dx} - 12y_p = 4e^{2x}$$

$$\frac{d^2}{dx^2}(\alpha e^{2x}) + \frac{d}{dx}(\alpha e^{2x}) - 12(\alpha e^{2x}) = 4e^{2x}$$

 $4\alpha e^{2x} + 2\alpha e^{2x} - 12e^{2x} = 4e^{2x}$ $4\alpha + 2\alpha - 12 = 4 \rightarrow 6\alpha = 16 \rightarrow \alpha = \frac{16}{6} = \frac{8}{3},$ hence

$$y_p = \frac{8}{3}e^{2x}$$

and the general solution is

$$y = y_h + y_p = Ce^{3x} + De^{-4x} + \frac{8}{3}e^{2x}$$

Answer: $y = Ce^{3x} + De^{-4x} + \frac{8}{3}e^{2x}$.

Question

b) Solve the initial value problem:

d^2 y / dx^2 + 2(dy/dx) + 2y=0, y(0)=2, y'(0)=1

Solution

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$$
$$y(0) = 2$$
$$y'(0) = 1$$

Let us find a solution in the form of

An homogeneous equation

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$$

 $y = e^{\mu x}$

has a characteristic equation

 $\mu^2 + 2\mu + 2 = 0$ Applying Vieta's formula we get $\mu = -1 + i$ or $\mu = -1 - i$.

Solution to homogeneous equation is $y = Ce^{-x}sinx + De^{-x}cosx$ To meet the initial conditions

$$y(0) = 2,$$

 $y'(0) = 1,$

consider

$$y(0) = 2 = Ce^{-0}sin0 + De^{-0}cos0 = 0 + D = D \to D = 2$$

$$y'(0) = 1 = -Ce^{-0}sin0 + Ce^{-0}cos0 + De^{-0}cos0 - De^{-0}sin0 = 0 + C + D = C + 2 = 1$$

$$\to C = -1$$

Answer: $y = -e^{-x}sinx + 2e^{-x}cosx$.

www.AssignmentExpert.com