Answer on Question \#57913 - Math - Abstract Algebra

Assume that A and B are isomorphic commutative rings with unity. Prove that if A is a field, so is B.

Solution.
By definition field is a

1. commutative ring with identity.
2. $\forall a \in A, a \neq 0, \exists a^{-1}: a a^{-1}=1$

By condition A and B isomorphic, i. e exists $f: A \rightarrow B$ a

$$
f(a) f(b)=f(a b)
$$

$$
f(a)+f(b)=f(a+b)
$$

, where $a, b \in A$
Evidently that $f\left(0_{A}\right)=0_{B}, f\left(1_{A}\right)=1_{B}$ and $\forall b \in B, \exists a \in A: f(a)=b$
So we only need to prove that for each $b \in B, b \neq 0$ exists $b^{-1} \in B: b b^{-1}=1$
Lets take for each $b \in B, b \neq 0$ the $b^{\prime}=f\left(a^{-1}\right)$, where $f(a)=b$.
It is possible because $b \neq 0$, than $a \neq 0$, and a^{-1} exists.
$b b^{\prime}=f(a) f\left(a^{-1}\right)=f\left(a a^{-1}\right)=f(1)=1$, i.e. we found b^{-1}
Answer: We proved that for each nonzero element in B exists inverse element. And it means that B is a field too.

