Answer on Question #57676 – Math – Analytic Geometry

Question

Find the equation of the circle determined by the given condition: **10.** tangent to the x-axis and passing through (5,1) and (12,8).

Solution

Equation of circle $(x - a)^2 + (y - b)^2 = R^2$, where (a, b) is the center of the circle, R is the radius of the circle. Hence

 $\begin{cases} (5-a)^2 + (1-b)^2 = R^2\\ (12-a)^2 + (8-b)^2 = R^2\\ |b| = R \end{cases}$

Solutions of the system are $a_1 = 0$, $b_1 = 13$ and $a_2 = 8$, $b_2 = 5$. Equations of circle are $x^2 + (y - 13)^2 = 13^2$ and $(x - 8)^2 + (y - 5)^2 = 5^2$.

Answer: $x^2 + (y - 13)^2 = 13^2$, $(x - 8)^2 + (y - 5)^2 = 5^2$.

Question

Find the equation of the circle determined by the given condition: **11.** tangent to the line y = -1 and containing the point (1,1) and (3,3).

Solution

Equation of the circle is $(x - a)^2 + (y - b)^2 = R^2$, where (a, b) is the center of the circle, R is the radius of the circle. Hence

 $\begin{cases} (1-a)^2 + (1-b)^2 = R^2 \\ (3-a)^2 + (3-b)^2 = R^2 \\ |b+1| = R \end{cases}$ Solutions of the system are $a_1 = 3, b_1 = 1$ and $a_2 = -5, b_2 = 9$. Equations of circle are $(x-3)^2 + (y-1)^2 = 2^2$ and $(x+5)^2 + (y-9)^2 = 10^2$.

Answer: $(x-3)^2 + (y-1)^2 = 2^2$, $(x+5)^2 + (y-9)^2 = 10^2$.

Question

Find the equation of the circle determined by the given condition: **12.** tangent to the line 2x + y = 4, 2x + y = 2 and x - 2y + 5 = 0.

Solution

Equation of circle is $(x - a)^2 + (y - b)^2 = R^2$, where (a, b) is the center of the circle, R is the radius of the circle. Hence

$$\begin{cases} \frac{|2a+b-4|}{\sqrt{5}} = R\\ \frac{|2a+b-2|}{\sqrt{5}} = R\\ \frac{|a-2b+5|}{\sqrt{5}} = R \end{cases}$$

Solutions of the system are $a_1 = \frac{2}{5}$, $b_1 = \frac{11}{5}$ and $a_2 = 0$, $b_2 = 3$. Equations of the circle are $(x - \frac{2}{5})^2 + (y - \frac{11}{5})^2 = \frac{1}{5}$ and $x^2 + (y - 3)^2 = \frac{1}{5}$. Answer: $(x - \frac{2}{5})^2 + (y - \frac{11}{5})^2 = \frac{1}{5}$, $x^2 + (y - 3)^2 = \frac{1}{5}$.

Question

Find the equation of the circle determined by the given condition: **13.** passing through the origin and tangent to the line 3x + 4y - 10 = 0, 4x + 3y - 5 = 0

Solution

Equation of circle $(x - a)^2 + (y - b)^2 = R^2$, where (a, b) is the center of the circle, R is the radius of the circle. Hence

$$\begin{cases} a^2 + b^2 = R^2\\ \frac{|3a+4b-10|}{5} = R\\ \frac{|4a+3b-5|}{5} = R \end{cases}$$

The system of equations has no solution. Thus, such a circle does not exist.

Answer: Circle does not exist.

Question

Find the equation of the circle determined by the given condition: **14.** inscribed in a triangle with sides on the lines x - 3y = -5, 3x + y = 1, 3x - y = -11.

Solution

Equation of circle $(x - a)^2 + (y - b)^2 = R^2$, where (a, b) is the center of the circle, R is the radius of the circle. Hence

$$\begin{cases} \frac{|a-3b+5|}{\sqrt{10}} = R\\ \frac{|3a+b-1|}{\sqrt{10}} = R\\ \frac{|3a-b+11|}{\sqrt{10}} = R \end{cases}$$

Solution of the system is $a = \frac{-5}{3}$, $b = \frac{7}{3}$. Equation of the circle is $(x + \frac{5}{3})^2 + (y - \frac{7}{3})^2 = \frac{121}{90}$. Answer: $(x + \frac{5}{3})^2 + (y - \frac{7}{3})^2 = \frac{121}{90}$. Question

Find the equation of the circle determined by the given condition: **15.** inscribed in a triangle with vertices (0,6), (8,6), (0,0).

Solution

Equation of the circle is $(x - a)^2 + (y - b)^2 = R^2$, where (a, b) is the center of the circle, R is the radius of the circle. The equations of lines passing through the vertices of the triangle are x=0, y=6, 6x-8y=0. Hence

$$\begin{cases} \frac{|a|}{1} = R\\ \frac{|6-b|}{1} = R\\ \frac{|6a-8b|}{10} = R \end{cases}$$

Solution of the system is a = 2, b = 4. Equation of the circle is $(x - 2)^2 + (y - 4)^2 = 4$.

Answer: $(x-2)^2 + (y-4)^2 = 4$.

Question

Find the equation of the circle determined by the given condition: **16.** having radius of square root of 5, through (0,4) and (3,7).

Solution

Equation of the circle is $(x - a)^2 + (y - b)^2 = R^2$, where (a, b) is the center of the circle, R is the radius of the circle. Hence

$$\begin{cases} a^2 + (4-b)^2 = 5\\ (3-a)^2 + (7-b)^2 = 5 \end{cases}$$

Solutions of the system are $a_1 = 1$, $b_1 = 6$ and $a_2 = 2$, $b_2 = 5$. Equations of the circle are $(x - 1)^2 + (y - 6)^2 = 5$ and $(x - 2)^2 + (y - 5)^2 = 5$.

Answer: $(x - 1)^2 + (y - 6)^2 = 5$, $(x - 2)^2 + (y - 5)^2 = 5$.

Question

Find the equation of the circle determined by the given condition: **17.** radius and tangent to the line 2x+y-1=0 at (1,-1).

Solution

Equation of the circle is $(x - a)^2 + (y - b)^2 = R^2$, where (a, b) is the center of the circle, R is the radius of the circle.

Line perpendicular to 2x+y-1=0 at (1, -1) is $\frac{x-1}{2} = \frac{y+1}{1}$, hence x-2y-3=0 and a-2b-3=0, that is, a=2b+3.

Given $R = \sqrt{(a-1)^2 + (b+1)^2}$, hence $R = \sqrt{(2b+3-1)^2 + (b+1)^2} = \sqrt{(2b+2)^2 + (b+1)^2} = \sqrt{5b^2 + 10b + 5} = \sqrt{5}|b+1|$, that is, $|b+1| = \frac{R}{\sqrt{5}}$. Thus, $b_1 = -1 - \frac{R}{\sqrt{5}}$ or $b_2 = -1 + \frac{R}{\sqrt{5}}$, hence $a_1 = 2b_1 + 3 = 2\left(-1 - \frac{R}{\sqrt{5}}\right) + 3 = 1 - \frac{2R}{\sqrt{5}}$ or $a_2 = 2b_2 + 3 = 2\left(-1 + \frac{R}{\sqrt{5}}\right) + 3 = 1 + \frac{2R}{\sqrt{5}}$. Equations of the circle are $(x - 1 + \frac{2R}{\sqrt{5}})^2 + \left(y + 1 + \frac{R}{\sqrt{5}}\right)^2 = R^2$ and $(x - 1 - \frac{2R}{\sqrt{5}})^2 + \left(y + 1 - \frac{R}{\sqrt{5}}\right)^2 = R^2$.

Answer:
$$(x - 1 + \frac{2R}{\sqrt{5}})^2 + \left(y + 1 + \frac{R}{\sqrt{5}}\right)^2 = R^2$$
, $(x - 1 - \frac{2R}{\sqrt{5}})^2 + \left(y + 1 - \frac{R}{\sqrt{5}}\right)^2 = R^2$.

Question

Find the equation of the circle determined by the given condition:

18. tangent to 3x-2y-9=0 and 2x-3y-1=0 and center on 2x+y-10=0.

Solution

Equation of circle is $(x - a)^2 + (y - b)^2 = R^2$, where (a, b) is the center of the circle, R is the radius of the circle.

$$\begin{cases} 2a+b-10 = 0\\ \frac{|3a-2b-9|}{\sqrt{13}} = R\\ \frac{|2a-3b-1|}{\sqrt{13}} = R \end{cases}$$

Solutions of the system are $a_1 = 2$, $b_1 = 6$ and $a_2 = 4$, $b_2 = 2$. Equations of the circle are $(x - 2)^2 + (y - 6)^2 = \frac{225}{13}$ and $(x - 4)^2 + (y - 2)^2 = 1$.

Answer:
$$(x-2)^2 + (y-6)^2 = \frac{225}{13}$$
, $(x-4)^2 + (y-2)^2 = 1$.