Answer on Question #57504 – Math – Geometry

Question

1. Counting 38 cu. ft. of coal to a ton, how many tons will a coal bin 19 ft long, 6 ft wide and 9 ft deep contain when level full?

Solution

The volume of the bin is $V = 19 \cdot 6 \cdot 9 = 1026 ft^3$. Then the bin contains 1026/38 = 27 tons.

Answer: 27 tons.

Question

2. A tank open at the top, is made of sheet of iron 1 inch thick. The internal dimensions of the tank are 4 ft. 8 in. long, 3 ft. 6 in. wide, 4 ft. 4 in. deep. Find: a) the weight of the tank when empty;

b) when full of salt water.

(salt water weighs = $sw = 64 \text{ lb/ft}^3$, iron is 7.2 times as heavy as saltwater).

Solution

Because 1 *ft*=12 *in*, length = l = 4 ft 8 *in* = $(4 \cdot 12 + 8) = 56$ *in*; width = $w = (3 \cdot 12 + 6) = 42$ *in*; depth = $d = (4 \cdot 12 + 4) = 52$ *in*;

iron weights =
$$\mathbf{i} = 7.2 \cdot 64 \frac{lb}{ft^3} = 460.8 \frac{lb}{ft^3}$$
.

The volume of tank is $V_t = 2ld + 2wd + lw + 4d + 2w + 2l + 4 = 2 * 56 * 52 + 2 * 42 * 52 + 56 * 42 + 4 * 52 + 2 * 42 + 2 * 56 + 4 = 12952 in³.$

The weight of the tank when it is empty is $w_T = V_t \cdot i = 12952 \cdot \frac{460.8}{1728} = 3453.8667 \ lb$.

The volume of water is $V_w = l * w * d = 56 * 42 * 52 = 122304 in^3$.

The weight of salt water is: $w_{SW} = V_w s_w = 122304 \cdot \frac{64}{1728} = 4529.7778 \, lb$.

The full weight is $W_W = w_T + w_{SW} = 7983.6445 \ lb$.

Answer: 3453.8667 lb; 7983.6445 lb.

Question

3. The edges of trunk are 3 ft, 4 ft and 6 ft. A second trunk is twice as long, the other edges are 4 ft by 4 ft. How do their volumes differ?

Solution

The volume of first trunk is $V1 = l_1 * w_1 * h_1 = 3 \cdot 4 \cdot 6 = 72 ft^3$. The volume of second trunk is $V_2 = l_2 \cdot w_2 \cdot h_2 = 6 \cdot 4 \cdot 4 = 96 ft^3$. The difference is $V_2 - V_1 = 96 - 72 = 24 ft^3$.

Answer: the volume of second trunk is $24 ft^3$ more than second.

Question

4. A solid concrete porch consists of three steps and a landing. The steps have a tread of 11 in., a rise of 7 in., and length of 7 ft. The landing is 6 ft by 7 ft. How much material was used in its construction?

Solution

The volume of three steps is $V_p = 7 \cdot 7 \cdot 11 \cdot (1 + 2 + 3) = 3234 in^3$.

I don't know the height of landing. Let it be h(unit of measurement – ft), 1 ft = 12 in.

Then the volume of landing is $V_l = 6 \cdot 7 \cdot h = 42h ft^3 = 42 \cdot 12^3 h in^3 = 72576h in^3$.

Total volume is $V = V_l + V_p = (72576h + 3234) in^3$.

Answer: (72576h + 3234) in³.