Answer on Question \#57415 - Math - Calculus

Question

Find the intersection points, if any, for each system of equations. An ellipse with vertices $(0,-5)$ and $(0,5)$ and a minor axis of length 8.

Solution

The equation of an ellipse is:

$$
\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1
$$

So, the coordinates of the center are $\left(\frac{0+0}{2} ; \frac{-5+5}{2}\right)=(0 ; 0)$. The length of a major axis is $2 a=5-(-5)=10$, hence $a=5$. It is given that the length of a minor axis is $2 b=8$, hence $b=\frac{8}{2}=4$.

Therefore, the equation of the ellipse is
$\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$.
Setting $x=0$ in the previous equation gives $\frac{y^{2}}{25}=1$, hence $y^{2}=25$ and finally $y=5$ or $y=-5$.
Setting $y=0$ in the previous equation gives $\frac{x^{2}}{16}=1$, hence $x^{2}=16$ and finally $x=4$ or $x=-4$. The intersection points (x-intercepts and y-intercepts) are $(0 ; 5),(0 ;-5),(4 ; 0),(-4 ; 0)$.

Answer: $(0 ; 5),(0 ;-5),(4 ; 0),(-4 ; 0)$.

