Find the intersection points, if any, for each system of equations.
$\left\{x^{\wedge} 2+y^{\wedge} 2-16 y+39=0\right.$
$\left\{y^{\wedge} 2-x^{\wedge} 2-9=0\right.$

Solution:

$\left\{\begin{array}{c}x^{2}+y^{2}-16 y+39=0 \\ y^{2}-x^{2}-9=0\end{array}=>x^{2}+y^{2}-16 y+39=y^{2}-x^{2}-9=>\right.$
$2 x^{2}-16 y+49=0=>x^{2}-8 y+24=0$
Then, we solve this equation and get $x= \pm \sqrt{8(y-3)}$,
$y^{2}-(8 y-24)-9=0=>y^{2}-8 y+15=0 \Rightarrow>y_{1}=\frac{8+2}{2}=5, y_{2}=\frac{8-2}{2}=3$
Then we put y_{1}, y_{2} to $x= \pm \sqrt{8(y-3)}$, so we get
$y_{1}=5=>x_{11}=4, x_{12}=-4$
$y 2=3=>x_{2}=0$

Answer

Intersection points are $(0,3),(4,5),(-4,5)$

www.AssignmentExpert.com

