Answer on Question \#57408 - Math - Calculus

Question

Graph each equation be sure to identify the important features such as the center, vertices, foci, directrix and asymptotes. The graph is scaled 8 tall and 8 wide.

$$
\frac{(y-2)^{2}}{4}-\frac{(x+3)^{2}}{9}=1
$$

Solution

$\frac{(y-2)^{2}}{4}-\frac{(x+3)^{2}}{9}=1$ represents a hyperbola.
The conic sections of the hyperbola is

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The center of the hyperbola is $O_{1}(h, k)$:

$$
O_{1}(-3,2)
$$

Because

$$
\begin{aligned}
& a^{2}=4, a=2 \\
& b^{2}=9, b=3
\end{aligned}
$$

the vertices of the hyperbola are

$$
\begin{gathered}
(-3,2 \pm a), \text { that is } \\
V_{1}(-3,0), V_{2}(-3,4) \\
\text { and } \\
(-3 \pm b, 2), \text { that is, } \\
V_{3}(-6,2), V_{4}(0,2)
\end{gathered}
$$

Because

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
c^{2}=4+9 \Rightarrow c=\sqrt{13}
\end{gathered}
$$

the foci of the hyperbola are

$$
\begin{gathered}
F(-3,2 \pm c), \text { that is, } \\
F_{1}(-3,5.6), F_{2}(-3,-1.6)
\end{gathered}
$$

Equations of the asymptotes are

$$
\begin{gathered}
y-k=m(x-h), \text { where } m= \pm \frac{a}{b} \\
y-2= \pm \frac{2}{3}(x+3)
\end{gathered}
$$

Graph of the function $\frac{(y-2)^{2}}{4}-\frac{(x+3)^{2}}{9}=1$ is given below.

