Answer on Question \#57311-Math - Algebra

Question

1. Solve each system. Show work

$$
7 y^{\wedge} 2+x^{\wedge} 2=64
$$

$x+y=4$

Solution

$\left\{\begin{array}{c}7 y^{2}+x^{2}=64 ; \\ x+y=4 .\end{array}\right.$
$\left\{\begin{array}{c}7 y^{2}+x^{2}=64 ; \\ x=4-y .\end{array}\right.$
Substitute for $x=4-y$ into the first equation of the system

$$
\left\{\begin{array}{l}
7 y^{2}+(4-y)^{2}=64 \tag{1}\\
x=4-y
\end{array}\right.
$$

Solving the first equation of the system
(1) $7 y^{2}+16-8 y+y^{2}=64$;
$8 y^{2}-8 y-48=0$;
divide by 8 :
$y^{2}-y-6=0 ;$
$D=1-4 \cdot(-6)=25$;
$y_{1}=\frac{1-5}{2}=\frac{-4}{2}=-2$;
$y_{2}=\frac{1+5}{2}=\frac{6}{2}=3$.
So
$y_{1}=-2 ; \quad y_{2}=3 ;$
Plug these values in (2)
(2) $x_{1}=4-y_{1}=4-(-2)=6 ; \quad x_{2}=4-y_{2}=4-3=1$.

Thus, solutions of the system are $\left(x_{1}, y_{1}\right)=(6,-2)$ and $\left(x_{2}, y_{2}\right)=(1,3)$.
Answer: (6,-2), (1,3).

Question

2. Solve each system. Show work
```
x^2+y^2+2x+2y=0
x^2+y^2+4x+6y+12=0
```


Solution

First method

$$
\left\{\begin{array}{c}
x^{2}+y^{2}+2 x+2 y=0 \\
x^{2}+y^{2}+4 x+6 y+12=0
\end{array}\right.
$$

Subtract the first equation $x^{2}+y^{2}+2 x+2 y=0$ from the second one
$x^{2}+y^{2}+4 x+6 y+12=0$ and obtain
$2 x+4 y+12=0$
Divide by 2
$x+2 y+6=0$,
hence
$x=-2 y-6$
Substituting for $x=-2 y-6$ into the first equation of the system

$$
x^{2}+y^{2}+2 x+2 y=0
$$

solve

$$
\begin{aligned}
& (-2 y-6)^{2}+y^{2}+2(-2 y-6)+2 y=0 \\
& 4 y^{2}+24 y+36+y^{2}-4 y-12+2 y=0 \\
& 5 y^{2}+22 y+24=0 \\
& D=22^{2}-4 \cdot 5 \cdot 24=4 \\
& y_{1}=\frac{-22+2}{2 \cdot 5}=\frac{-20}{10}=-2 \\
& y_{2}=\frac{-22-2}{2 \cdot 5}=\frac{-24}{10}=\frac{-12}{5}=-2.4
\end{aligned}
$$

Then

$$
\begin{aligned}
& x_{1}=-2 y_{1}-6=-2 \cdot(-2)-6=4-6=-2 \\
& x_{2}=-2 y_{2}-6=-2 \cdot \frac{-12}{5}-6=\frac{24}{5}-6=\frac{24-30}{5}=\frac{-6}{5}=-1.2
\end{aligned}
$$

Thus, solutions of the system are $\left(x_{1}, y_{1}\right)=(-2,-2)$ and $\left(x_{2}, y_{2}\right)=\left(-\frac{6}{5},-\frac{12}{5}\right)$.

Second method

$$
\begin{align*}
& \left\{\begin{array}{c}
x^{2}+y^{2}+2 x+2 y=0 \\
x^{2}+y^{2}+4 x+6 y+12=0
\end{array}\right. \\
& \left\{\begin{array}{c}
x(x+2)+y(y+2)=0 \\
x(x+4)+y(y+6)+12=0
\end{array}\right. \\
& \left\{\begin{array}{l}
\frac{1}{2}(x+1)^{2}+\frac{1}{2}(y+1)^{2}=1 \\
(x+2)^{2}+(y+3)^{2}=1
\end{array}\right. \tag{1}
\end{align*}
$$

(1) and (2) are equations of the circles.

Fig. 1 Graphic solution
$x_{1}=-2 ; y_{1}=-2 ;$
$x_{2}=-\frac{6}{5} ; y_{2}=-\frac{12}{5}$;
Answer: $(-2,-2),\left(-\frac{6}{5^{\prime}}-\frac{12}{5}\right)$.

