Answer on Question \#57277 - Math - Analytic Geometry

Question

Which of the following is the equation of an ellipse centered at $(5,1)$ having a vertical minor axis of length 4 and a major axis length 6 ?

A: $\frac{(x-5)^{2}}{4}+\frac{(y-1)^{2}}{9}=1$
B: $\frac{(x-5)^{2}}{9}+\frac{(y-1)^{2}}{4}=1$
C: $\frac{(x+5)^{2}}{9}+\frac{(y+1)^{2}}{4}=1$
D: $\frac{(x-5)^{2}}{36}+\frac{(y-1)^{2}}{16}=1$

Solution

The equation of an ellipse:

$$
\frac{(x-c)^{2}}{a^{2}}+\frac{(y-d)^{2}}{b^{2}}=1
$$

The center of an ellipse is $\mathrm{O}(\mathrm{c}, \mathrm{d})$. It is given that the center of the given ellipse is
$\mathrm{O}(5,1)$.
Major axis is the longest diameter of an ellipse. Minor axis is the shortest diameter of an ellipse.

The lengths of axes are $2 a$ and $2 b$. Because the minor axis is vertical, for ellipse $a>b$, then $2 a>2 b$.

So

$$
\begin{gathered}
2 a=6 \\
a=\frac{6}{2}=3
\end{gathered}
$$

and

$$
\begin{gathered}
2 b=4 \\
b=\frac{4}{2}=2 .
\end{gathered}
$$

The equation of the ellipse is

$$
\frac{(x-5)^{2}}{3^{2}}+\frac{(y-1)^{2}}{2^{2}}=1
$$

$$
\frac{(x-5)^{2}}{9}+\frac{(y-1)^{2}}{4}=1
$$

Answer: $\mathrm{B}: \frac{(x-5)^{2}}{9}+\frac{(y-1)^{2}}{4}=1$.

