Answer on Question \#57276 - Math - Analytic Geometry

Question

Which of the following equations represents an ellipse having vertices located at $(2,9)$ and $(2,-5)$ and foci located at $(2,5)$ and $(2,-1)$?

A: $(x+2)^{\wedge} 2(y+2)^{\wedge} 2$
---------- + ---------- = 1

$$
40 \quad 49
$$

B: $(x-2)^{\wedge} 2(y-2)^{\wedge} 2$
--------- + ---------- = 1

$$
9 \quad 49
$$

$C:(x-2)^{\wedge} 2(y-2)^{\wedge} 2$
--------- + ---------- = 1
$40 \quad 49$
D: $(x-2)^{\wedge} 2(y-2)^{\wedge} 2$
---------- + ----------- = 1
$49 \quad 40$

Solution

For ellipse $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1, a>b$
Vertices: $(h+a, k),(h-a, k)$,
Foci: $(h+c, k),(h-c, k)$, where $c^{2}=a^{2}-b^{2}$.

For ellipse $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1, a<b$
Vertices: $(h, k+b),(h, k-b)$.
Foci: $(h, k+c),(h, k-c)$, where $c^{2}=b^{2}-a^{2}$.
If it is given that vertices are located at $(2,9)$ and $(2,-5)$ and foci are located at $(2,5)$ and $(2,-1)$, then the second type of ellipses ($a<b$) meets these conditions
$h=2, \quad\left\{\begin{array}{c}k+b=9 \\ k-b=-5\end{array},\left\{\begin{array}{c}k+c=5 \\ k-c=-1\end{array} \quad \rightarrow \quad k=2, b=7, c=3\right.\right.$,
$a^{2}=b^{2}-c^{2}=49-9=40$.
Equation of ellipse is $\frac{(x-2)^{2}}{40}+\frac{(y-2)^{2}}{49}=1$.
Answer: C. $\frac{(x-2)^{2}}{40}+\frac{(y-2)^{2}}{49}=1$.

