How long is the minor axis for the ellipse shown below?
$\frac{(x+4)^{2}}{25}+\frac{(y-1)^{2}}{16}=1$.
Solution. For ellipse
$\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1$
the minor axis is $2 b$. Then for ellipse
$\frac{(x+4)^{2}}{25}+\frac{(y-1)^{2}}{16}=1$
the minor axis is $2 \cdot 4=8$.
Answer: the minor axis is 8. (A)
Which of the following correctly represents the coordinates of the foci of the ellipse shown below?
$\frac{(x-7)^{2}}{4}+\frac{(y+3)^{2}}{16}=1$.
Solution. Let the question of the ellipse
$\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1$,
where $b \geq a$. The coordinates of the foci of this ellipse are
$\left(x_{0}, y_{0} \pm c\right)$,
where $c=\sqrt{b^{2}-a^{2}}$.
For the ellipse
$\frac{(x-7)^{2}}{4}+\frac{(y+3)^{2}}{16}=1$
$c=\sqrt{16-4}=\sqrt{12}=2 \sqrt{3}$.
The coordinates of the foci of this ellipse are
$(7,-3 \pm 2 \sqrt{3})$.
Answer: the coordinates of the foci of the ellipse $(7,-3 \pm 2 \sqrt{3})$. (C)

