Answer on Question #57269 – Math – Algebra

Question

1. Solve the polynomial equation, show work. $x^3 - 7x^2 - x + 7 = 0$

Solution

 $x^3 - 7x^2 - x + 7 = 0.$

The possible roots of the equation are among the divisors of the constant term 7. So one of the roots is 7.

Check:

 $7^3 - 7 \cdot 7^2 - 7 + 7 = 0.$

Find other roots:

$$\frac{x^{3}-7x^{2}-x+7}{x-7} = x^{2} - 1.$$

The roots of $x^2 - 1 = 0$ are 1 and -1, because $(-1)^2 - 1 = 0$ and $1^2 - 1 = 0$.

Thus, the roots of $x^3 - 7x^2 - x + 7 = 0$ are -1, 1, 7.

Answer: the roots of $x^3 - 7x^2 - x + 7 = 0$ are -1, 1, 7.

Question

2. Solve the polynomial equation, show work. $x^4 + x^3 - 6x^2 - 14x - 12 = 0$

Solution

 $x^4 + x^3 - 6x^2 - 14x - 12 = 0.$

The possible roots of the equation are among the divisors of the constant term -12. One of the roots is -2.

Check:

$$(-2)^4 + (-2)^3 - 6 \cdot (-2)^2 - 14 \cdot (-2) - 12 = 0$$

Find other roots:

$$\frac{x^4 + x^3 - 6x^2 - 14x - 12}{x + 2} = x^3 - x^2 - 4x - 6$$
. One of the root of $x^3 - x^2 - 4x - 6 = 0$ is 3, because
$$3^3 - 3^2 - 4 \cdot 3 - 6 = 0$$

Find other roots.

 $\frac{x^3 - x^2 - 4x - 6}{x - 3} = x^2 + 2x + 2$. Solve the quadratic equation: $D = 2^2 - 4 * 1 * 2 = 4 - 8 = -4$, hence $D < 0, \sqrt{D} = \pm 2i$. $x = \frac{-2 \pm 2i}{2} = -1 \pm i$

The roots of $x^4 + x^3 - 6x^2 - 14x - 12 = 0$ are -2, 3, -1+i, -1-i.

Answer: the roots of $x^4 + x^3 - 6x^2 - 14x - 12 = 0$ are -2, 3, -1+i, -1-i.

www.AssignmentExpert.com