Answer on Question \#57267-Math - Calculus

Question

Determine the equations of the asymptotes, show work: $g(x)=\frac{2 x^{2}+1}{x+3}$.

Solution

1) The graph of $g(x)=\frac{2 x^{2}+1}{x+3}$ has a vertical asymptote $x=-3$, since $\lim _{x \rightarrow-3} \frac{2 x^{2}+1}{x+3}=\infty$.
2) If there exist finite limits $k=\lim _{x \rightarrow \infty} \frac{g(x)}{x}$ and $b=\lim _{x \rightarrow+\infty}(g(x)-k x)$,
then the line $y=k x+b$ is an oblique asymptote of the graph for $x \rightarrow+\infty$ (in a similar way, one defines an asymptote for $x \rightarrow-\infty)$.
Check:

$$
\begin{aligned}
& k=\lim _{x \rightarrow \infty} \frac{g(x)}{x}=\lim _{x \rightarrow \infty} \frac{2 x^{2}+1}{(x+3) x}=2 . \\
& b=\lim _{x \rightarrow \infty} g(x)-k x=\lim _{x \rightarrow \infty} \frac{2 x^{2}+1}{x+3}-2 x==\lim _{x \rightarrow \infty} \frac{1-6 x}{x+3}=-6 .
\end{aligned}
$$

Thus, the equation of the oblique asymptote has the form $y=2 x-6$.

Answer:

$$
\begin{aligned}
& x=-3 \\
& y=2 x-6
\end{aligned}
$$

