Answer on Question #57267 – Math – Calculus

Question

Determine the equations of the asymptotes, show work: $g(x) = \frac{2x^2+1}{x+3}$.

Solution

1) The graph of $g(x) = \frac{2x^2+1}{x+3}$ has a vertical asymptote x = -3, since $\lim_{x \to -3} \frac{2x^2+1}{x+3} = \infty$.

2) If there exist finite limits $k = \lim_{x \to \infty} \frac{g(x)}{x}$ and $b = \lim_{x \to +\infty} (g(x) - kx)$, then the line y = kx + b is an oblique asymptote of the graph for $x \to +\infty$ (in a similar way, one defines an asymptote for $x \to -\infty$). Check:

$$k = \lim_{x \to \infty} \frac{g(x)}{x} = \lim_{x \to \infty} \frac{2x^2 + 1}{(x + 3)x} = 2.$$

$$b = \lim_{x \to \infty} g(x) - kx = \lim_{x \to \infty} \frac{2x^2 + 1}{x + 3} - 2x = \lim_{x \to \infty} \frac{1 - 6x}{x + 3} = -6.$$

Thus, the equation of the oblique asymptote has the form y = 2x - 6.

<u>Answer</u>:

$$x = -3,$$
$$y = 2x - 6.$$

www.AssignmentExpert.com