Answer on Question \#57265 - Math - Calculus

Question

1. Sketch the graph of $f(x)=x^{4}-4 x^{3}-x^{2}+12 x-2$. Identify the extreme values and show work. The graph is scaled 12 tall and 4 wide.

Solution

This function is defined for all $x \in \mathbb{R}(\mathbb{R}$ is its domain), y-intercept is the point ($0 ;-2$), because $f(0)=-2$.

Let's calculate the first and the second derivatives to find the extreme values. We have:

$$
f^{\prime}(x)=4 x^{3}-12 x^{2}-2 x+12
$$

if $f^{\prime}(-1)=-2, f^{\prime}(1)=2, f^{\prime}(2)=-8, f^{\prime}(3)=6$ then the equation $4 x^{3}-12 x^{2}-2 x+12=0$ has three solutions. Approximately these solutions are $x_{1} \approx-0.9, x_{2} \approx 1.1, x_{3} \approx 2.8$, then the given function is increasing on $\left(x_{1} ; x_{2}\right) \cup\left(x_{3} ;+\infty\right)$ and it is decreasing on $\left(-\infty ; x_{1}\right) \cup\left(x_{2} ; x_{3}\right)$.

$$
f^{\prime \prime}(x)=12 x^{2}-24 x-2
$$

$12 x^{2}-24 x-2=0, D^{\prime}=144+24=168, x_{5} \approx \frac{1}{12^{\prime}}, x_{6} \approx 2$ are points of inflection.
We are sketching the graph (for convenience we take a different scale than the given)

Question

2. Sketch the graph of $h(x)=x^{2}-3 x-\frac{4}{x}-4$ Label any important features. State the domain and range show work. The graph is scaled 5 tall and 5 wide.

Solution

The domain of this function is $\mathbb{R} \backslash\{0\}$. The range is \mathbb{R}.

The Given function is discontinuous at the point $x=0$ and $x=0$ is a vertical asymptote, furthermore

$$
\lim _{x \rightarrow 0 \neq 0} h(x)= \pm \infty .
$$

Let 's calculate the first derivative. We have:

$$
f^{\prime}(x)=2 x-3+\frac{4}{x^{2}}
$$

Equation $2 x-3+\frac{4}{x^{2}}=0$ has one solution $x=x^{*} \approx-0.9$ and $f^{\prime}(-1)<0, f^{\prime}(1)>0$. It means that the given function is increasing on $\left(x^{*} ; 0\right) \cup(0 ;+\infty)$ and it is decreasing on $\left(-\infty ; x^{*}\right)$.

Sketching the graph

