Answer on Question \#57233 - Math - Calculus

Question

What is the equation of the hyperbola with vertices at $(0,-4)$ and $(0,4)$ and foci at $(0,-6)$ and $(0,6)$

A: $\frac{y^{2}}{16}-\frac{x^{2}}{20}=1$
B: $\frac{x^{2}}{16}-\frac{y^{2}}{20}=1$
C: $\frac{x^{2}}{16}-\frac{y^{2}}{36}=1$
D: $\frac{x^{2}}{16}-\frac{y^{2}}{52}=1$

Solution

Because vertices and foci of hyperbola are located on the y-axis, the center is the point (0,0), the equation of the hyperbola is

$$
\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1,
$$

where
$a=4$, because vertices $(0, a)=(0,4)$ and $(0,-a)=(0,-4)$ lie on the hyperbola.
Besides,
$c=6$, because foci are at $(0,6)$ and $(0,-6)$.
On the other hand,

$$
b=\sqrt{c^{2}-a^{2}} .
$$

Thus,

$$
b=\sqrt{6^{2}-4^{2}}=\sqrt{36-16}=\sqrt{20}=2 \sqrt{5}
$$

and finally

$$
\begin{gathered}
\frac{y^{2}}{4^{2}}-\frac{x^{2}}{(\sqrt{20})^{2}}=1 \\
\frac{y^{2}}{\mathbf{1 6}}-\frac{x^{2}}{\mathbf{2 0}}=\mathbf{1}
\end{gathered}
$$

Answer: A: $\frac{y^{2}}{16}-\frac{x^{2}}{20}=1$.

