Answer on Question \#57229 - Math - Calculus

Question

What are the equations for the asymptote of this hyperbola $\frac{y^{2}}{36}-\frac{x^{2}}{121}=1$?
A. $y= \pm \frac{11}{6} x$
B. $y= \pm \frac{\sqrt{85}}{5} x$
C. $y= \pm \frac{\sqrt{157}}{5} x$
D. $y= \pm \frac{6}{11} x$

Solution

The general equation of the hyperbola is $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$. Hence $a=6$ and $b=11$.
Since the minus sign beside the variable x, hyperbola has vertical transverse axis, the center is a point $(0,0)$. In this case equations for the asymptote has form $y= \pm \frac{a}{b} x$.

Hence, equations for the asymptote are

$$
y=\frac{6}{11} x \text { and } y=-\frac{6}{11} x
$$

The correct answer is D. $y= \pm \frac{6}{11} x$.
Plot of the hyperbola and its asymptotes

Hyperbole is a blue line and its asymptotes are red lines.

Answer: D: $y=\frac{6}{11} x$ and $y=-\frac{6}{11} x$.

