Answer on Question #57170 - Math - Calculus

Question

If \$1,000 is invested in an account that pays 3% interest compounded annually, an expression that represents the amount in the account at the end of two years can be given by which of the following equations?

A:1000(1.03)²

B:1000(0.3)^2

 $C: 1000 + 0.2^3$

Solution

If A\$ is invested in an account that pays p% interest compounded annually, an expression that represents the amount in the account at the end of n years can be given by the following formula

$$A_n = A \cdot \left(1 + \frac{p}{100}\right)^n.$$

If A = 1000, p = 3% and n = 2, then $A_n = 1000 \cdot 1.03^2$.

Answer: A: $1000 \cdot 1.03^2$.

Question

Which of the following could be an example of a function with a domain $(-\infty, \infty)$ and a range $(-\infty, 4)$? Check all that apply

$$y=-(3)^x-4$$

$$y = -(0.25)^x - 4$$

$$y = -(0.025)^x + 4$$

$$y = -(3)^x + 4$$

Solution

The function $y=a^x$, where a>0, $a\neq 1$, has a domain $(-\infty,\infty)$ and a range $(0,\infty)$. Then the function $y=-a^x$, where a>0, $a\neq 1$, has a domain $(-\infty,\infty)$ and a range $(-\infty,0)$. Therefore the functions $y=-3^x-4$ and $y=-0.25^x-4$ have a domain $(-\infty,\infty)$ and a range $(-\infty,-4)$. The functions $y=-3^x+4$ and $y=-0.025^x+4$ have a domain $(-\infty,\infty)$ and a range $(-\infty,4)$.

Answer: the functions with a domain $(-\infty, \infty)$ and a range $(-\infty, 4)$ are $y = -0.025^x + 4$ and $y = -3^x + 4$.

www.AssignmentExpert.com