Answer on Question \#57135 - Math - Complex Analysis

Find locus of points in plane satisfying given conditions.
(i) $\quad|z-1|=6$
(ii) $\quad|z+3|+|z+1|=4$
(iii) $\operatorname{Arg} z=\pi / 3$
(iv) $\quad \operatorname{Arg}(z-1)=-3 \pi / 4$

Solution

(i) $|z-1|=6$ represents a circle of radius 6 centered at point $(1,0)$.

(ii) $\quad|z+3|+|z+1|=4$ represents an ellipse with foci at $(-3,0)$ and $(-1,0)$

(iii) $\operatorname{Arg} z=\pi / 3$ represents a straight line of the form
$y=k x$,
where $k=\tan \pi / 3=\sqrt{3}, x=\operatorname{Re}(z), y=\operatorname{Im}(z)$.

$$
y=\sqrt{3} x
$$

$\operatorname{Im}|z|$

$\operatorname{Re}|z|$
(iv) $\operatorname{Arg}(z-1)=-3 \pi / 4$ represents a line of the form

$$
y=k(x-1)
$$

$$
\text { where } k=\tan \left(-\frac{3 \pi}{4}\right)=-1 / \sqrt{2}, x=\operatorname{Re}(z), y=\operatorname{Im}(z)
$$

$$
y=-\frac{x-1}{\sqrt{2}}
$$

