Answer on Question \#57060 - Math - Calculus

if $x+y+z=81$ then find the least value of $1 / x 3+1 / y 3+1 / z 3$

Solution

We use the method of Lagrange multipliers.
Form a function $F(x, y, z, \lambda)=1 / x^{3}+1 / y^{3}+1 / z^{3}+\lambda(x+y+z-81)$.
Equating the partial derivatives to zero we construct a system to determine stationary points:

$$
\left\{\begin{array}{l}
\frac{\partial F}{\partial x}=-\frac{3}{x^{4}}+\lambda=0 \\
\frac{\partial F}{\partial y}=-\frac{3}{y^{4}}+\lambda=0 \\
\frac{\partial F}{\partial z}=-\frac{3}{z^{4}}+\lambda=0 \\
\frac{\partial F}{\partial \lambda}=x+y+z-81
\end{array}\right.
$$

where , evidently, $\lambda>0$, because in case of $\lambda=0$ the system has no solution.
From the first three equations it follows that

$$
\begin{equation*}
x=y=z=\sqrt[4]{\frac{3}{\lambda}} \tag{1}
\end{equation*}
$$

Substituting it into the last one we get $3 \cdot \sqrt[4]{\frac{3}{\lambda}}=81 \quad$ or $\quad \sqrt[4]{\frac{3}{\lambda}}=27$. Using the previous equality and (1) we find $x=y=z=27$. So, the function has a single critical point and $F(27,27,27, \lambda)=\frac{3}{27^{3}}=\frac{1}{6561}$. Since ,for example, $F(1,40,40, \lambda)=1+\frac{1}{40^{3}}+\frac{1}{40^{3}}>1>\frac{1}{6561}$, the point $(27,27,27, \lambda)$ is the point of minimum. That is $\min \left\{\begin{array}{c}\left.1 / x^{3}+1 / y^{3}+1 / z^{3}\right\} \\ x+y+z-81=0\end{array}\right\}=\frac{1}{6561}$.

Answer: the least value of $\frac{1}{x^{3}}+\frac{1}{y^{3}}+\frac{1}{z^{3}}$ is $\frac{1}{6561}$.

