Answer on Question \#57025 - Math - Differential Equations

The response $x(t)$ of system to an input $u(t)$ is given by the differential equation

$$
\frac{d^{2} x}{d t^{2}}+6 \frac{d x}{d t}+13 x=2 \frac{d u}{d t}+4 u
$$

Find the transfer function of the system and draw the pole-zero plot.

Solution

The differential equation:

$$
\ddot{x}+6 \dot{x}+13 x=2 \dot{u}+4 u
$$

The equation in the operator form using differential operator s :

$$
\left(s^{2}+6 s+13\right) x=(2 s+4) u
$$

Find the transfer function of the system:

$$
W(s)=\frac{x}{u}=\frac{2 s+4}{s^{2}+6 s+13}
$$

Pole: value of s that makes T.F. $\rightarrow \infty$
Pole: $s^{2}+6 s+13=0$

$$
\begin{aligned}
& D=b^{2}-4 a c=6^{2}-4 \times 13=36-52=-16 \\
& s=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-6 \pm \sqrt{-16}}{2}=\frac{-6 \pm 4 i}{2}=-3 \pm 2 i
\end{aligned}
$$

Zero: value of s that makes T.F. $\rightarrow 0$
Zero: $2 s+4=0$

$$
s=-2
$$

Pole-zero plot:

Answer: the transfer function of the system is $W(s)=\frac{2 s+4}{s^{2}+6 s+13}$, pole: $s=-3+$ $2 i$ and $s=-3-2 i$, zero: $s=-2$.

