14.3 Geometric interpretation (of partial derivatives)

Given a function $f: \mathbb{R}^l \to \mathbb{R}^l$ we know that the derivative $\frac{\partial f}{\partial x}(h)$ gives us the slope of the tangent line to the graph of the function f at x_* .

If we have a function

 $f: \mathbb{R}^{r} \rightarrow \mathbb{R}^{l}$

its graph is a surface in \mathbb{R}^3 .

Thus, for a function $f: \mathbb{R}^2 \to \mathbb{R}^1$ the partial derivative $\frac{\partial f}{\partial x}(x_0, y_0)$ slope of the tangent line to the intersection of the graph of plane $y = y_0$ at the point (x_0, y_0) . Similarly $\frac{\partial f}{\partial y_0}(x_0, y_0)$ is the slope of the tangent line to the intersection of the graph of \(\extstyle \) with the plane X=Xa.

We can also investigate how partial derivatives relate to level sets.

Once again, we have $f: \mathbb{R}^1 \to \mathbb{R}^1$

 $\frac{\frac{2}{3x}(x,y_0)}{\frac{2}{3x}(x_1,y_0)} \text{ measures the rate of change of } \begin{cases} \frac{2}{3x}(x,y_0) \text{ measures the rate of change of } \\ \frac{2}{3x}(x_1,y_0) \text{ is } \text{ small as we move along the line} \end{cases}$