Answer on Question \#56981 - Math - Analytic Geometry

Question

Find the equations of the chords of the parabola $y^{2}=4 a x$ which pass through the point $(-6 a, 0)$ and which subtends an angle of 45° at the vertex.

Solution

The vertex of parabola

$$
y^{2}=4 a x
$$

is $(0,0)$.

Equation of a chord in the slope-intercept form is

$$
\begin{equation*}
y=k x+b \tag{1}
\end{equation*}
$$

Here $k=\tan 45^{\circ}=1$, because a chord subtends an angle of 45° at the vertex.

So, in fact (1) is given by

$$
\begin{equation*}
y=x+b \tag{2}
\end{equation*}
$$

On the other hand, this line passes through the point ($-6 a, 0$), consequently its coordinates satisfy equation (2):
$0=-6 a+b$,
$b=6 a$.

Finally, $y=x+6 a$ is the equation of chord.

Answer: $y=x+6 a$.

