## Answer on Question \#56909 - Math - Calculus

## Question

State the domain and range of the function. Show work.

$$
k(x)=\frac{4 x+3}{x^{2}-1}
$$

## Solution

## Domain of function

Here we have only one restriction on values of $x$ : denominator cannot be equal to zero:

$$
\begin{gathered}
x^{2}-1 \neq 0 \\
x \neq 1 \text { or } x \neq-1
\end{gathered}
$$

Hence domain is $(-\infty,-1) \cup(-1,1) \cup(1,+\infty)$.

## Range of function

Here we have only one restriction on values of $k$ : there exists a value of $x$ such that $k=\frac{4 x+3}{x^{2}-1}$.
Rewrite the last equality in the following form:
$\frac{4 x+3}{x^{2}-1}-k=\frac{4 x+3-k\left(x^{2}-1\right)}{x^{2}-1}=\frac{-k x^{2}+4 x+(3+k)}{x^{2}-1}=0$, then

$$
-k x^{2}+4 x+(3+k)=0
$$

is a quadratic equation for $k \neq 0$,
its discriminant is
$D=16-4 \cdot(-k) \cdot(3+k)=16+4 k(k+3)=4 k^{2}+12 k+16=4\left(k^{2}+3 k+4\right)=$
$=4\left(k^{2}+2 \cdot \frac{3}{2} k+\frac{9}{4}+4-\frac{9}{4}\right)=4\left(\left(k^{2}+2 \cdot \frac{3}{2} k+\frac{9}{4}\right)+\frac{4 \cdot 4-9}{4}\right)=4\left(\left(k+\frac{3}{2}\right)^{2}+\frac{7}{4}\right)>0$, hence the quadratic equation always has a root for any value of $k \neq 0$.

If $k=0$, then $4 x+3=0$, hence $x=-\frac{3}{4}$. So there exists a value of $x$ such that $k=0$.
Thus, $k$ can take any real values, hence the range of function $k(x)=\frac{4 x+3}{x^{2}-1}$ is $(-\infty ;+\infty)$.
Answer: $(-\infty,-1) \cup(-1,1) \cup(1,+\infty) ; \quad(-\infty ;+\infty)$.

