Answer on Question \#56904 - Math - Calculus

Task 1. The x-intercept of the graph of $f(x)=3 \log (x-5)+2$ is:
A: $10^{\frac{2}{3}}-5$
B: $10^{-\frac{2}{3}}-5$
C: $10^{-\frac{2}{3}}+5$
D: $10^{\frac{2}{3}}+5$

Solution.

Solve the following equation:

$$
3 \log (x-5)+2=0 \Leftrightarrow 3 \log (x-5)=-2 \Leftrightarrow \log (x-5)=-\frac{2}{3}
$$

And find x :

$$
x-5=10^{-\frac{2}{3}} \Leftrightarrow x=10^{-\frac{2}{3}}+5
$$

Answer: C: $10^{-\frac{2}{3}}+5$.
Task 2. The population (in millions) of a certain country can be approximated by the function:

$$
p(x)=100 \cdot 1.02^{x}
$$

Where x is the number of years after 2000. Which of the following calculations will tell in what year the population can be expected to reach 300 million?

A: $\frac{\ln 3}{\ln 1.02}$
B: $\ln \frac{3}{1.02}$
C: $\frac{\ln 3}{\ln 1.02}+2000$
D: $\ln \frac{3}{1.02}+2000$

Solution.

Solve the following equation:

$$
300=100 \cdot 1.02^{x} \Leftrightarrow 1.02^{x}=3
$$

Find x :

$$
x=\log _{1.02} 3
$$

Using formula:

$$
\log _{a} b=\frac{\log _{c} b}{\log _{c} a}
$$

And let $c=e$ we get:

$$
x=\frac{\ln 3}{\ln 1.02}
$$

But x is the number of years after 2000. Then, correct answer is $\frac{\ln 3}{\ln 1.02}+2000$

Answer: C

