Answer the question \#56866 - Math - Analytic Geometry

If lines be drawn parallel to the axes of coordinates from the points where $x \cos \alpha+y \sin \alpha=p$ meets them so as to meet the perpendicular on this line from the origin in the points P and Q then prove that $|P Q|=4 p|\cos 2 \alpha| \cdot \operatorname{cosec}^{2}(2 \alpha)$.

Solution

Let $A B$ is the line, which shows by the given equation $x \cos \alpha+y \sin \alpha=p$ (see Fig. below). Then coordinates of the points A and B are $\left(0 ; \frac{p}{\sin \alpha}\right)$ and $\left(\frac{p}{\cos \alpha} ; 0\right)$ accordingly. After that we write the equation for the line $P Q$ which is perpendicular to $A B$ and crosses the origin ($0 ; 0$). We obtain $P Q: x \sin \alpha-y \cos \alpha=0$.
Equation of line $A D$ is $y=\frac{p}{\sin \alpha^{\prime}}$, hence the y-coordinate of point P is $y_{P}=\frac{p}{\sin \alpha}$.
Equation of line $B D$ is $x=\frac{p}{\cos \alpha}$, hence the x-coordinate of point Q is $x_{p}=\frac{p}{\cos \alpha}$. Coordinates of the points P and Q satisfy equation $P Q: x \sin \alpha-y \cos \alpha=0$, so they are $\left(\frac{p \cos \alpha}{\sin ^{2} \alpha} ; \frac{p}{\sin \alpha}\right)$ and $\left(\frac{p}{\cos \alpha} ; \frac{p \sin \alpha}{\cos ^{2} \alpha}\right)$ respectively. By the formula $|P Q|=\sqrt{\left(x_{q}-x_{p}\right)^{2}+\left(y_{q}-y_{p}\right)^{2}}$, we obtain:
$|P Q|=\sqrt{\left(\frac{p}{\cos \alpha}-\frac{p \cos \alpha}{\sin ^{2} \alpha}\right)^{2}+\left(\frac{p \sin \alpha}{\cos ^{2} \alpha}-\frac{p}{\sin \alpha}\right)^{2}}$
$=p \sqrt{\left(\frac{\sin ^{2} \alpha-\cos ^{2} \alpha}{\cos \alpha \sin ^{2} \alpha}\right)^{2}+\left(\frac{\sin ^{2} \alpha-\cos ^{2} \alpha}{\cos ^{2} \alpha \sin \alpha}\right)^{2}}=p \sqrt{\frac{\cos ^{2}(2 \alpha)}{\cos ^{2} \alpha \sin ^{4} \alpha}+\frac{\cos ^{2}(2 \alpha)}{\cos ^{4} \alpha \sin ^{2} \alpha}}$
$=\frac{4 p|\cos (2 \alpha)|}{\sqrt{16 \cos ^{4} \alpha \sin ^{4} \alpha}}=\frac{4 p|\cos (2 \alpha)|}{\sqrt{(\sin (2 \alpha))^{4}}}=4 p|\cos (2 \alpha)| \cdot \operatorname{cosec}^{2}(2 \alpha)$

Thus, $|P Q|=4 p|\cos 2 \alpha| \cdot \operatorname{cosec}^{2}(2 \alpha)$.

