Answer on Question #56865 – Math – Analytic Geometry

Find the co-ordinates of the orthocentre of the triangle, the equations of whose sides are x + y = 1.2x + 3y = 6, 4x - y + 4 = 0, without finding the co-ordinates of its vertices.

Solution

Rewrite equations x + y = 1.2x + 3y = 6, 4x - y + 4 = 0 as y = -x + 1, $y = -\frac{2}{3}x + 2$, y = 4x + 4 respectively.

Given:

a:
$$y = -x + 1$$

b: $y = -\frac{2}{3}x + 2$
c: $y = 4x + 4$

Three lines $y = m_1x + b_1$, $y = m_2x + b_2$, $y = m_3x + b_3$ intersect at a single point $(x^*; y^*).$

Given m_1, b_1, m_2, b_2, m_3 . Find b_3 .

To find the point of intersection of straight lines

$$y = m_1 x + b_1, y = m_2 x + b_2,$$
 (1)

equate the right-hand sides of the previous equalities:

$$m_1x + b_1 = m_2x + b_2,$$

 $(m_1 - m_2)x = b_2 - b_1$
 $=> x = -\frac{b_1 - b_2}{m_1 - m_2}.$

Substitute for x into $y = m_1x + b_1$:

$$y = m_1 x + b_1,$$

 $y = m_1 \cdot \left(-\frac{b_1 - b_2}{m_1 - m_2} \right) + b_1,$

$$y = \frac{-m_1b_1 + m_1b_2 + b_1m_1 - b_1m_2}{m_1 - m_2},$$

$$y = \frac{m_1 b_2 - b_1 m_2}{m_1 - m_2},$$

$$y = \frac{b_1 m_2 - b_2 m_1}{m_2 - m_1}.$$

Thus, the point of intersection of straight lines (1) is
$$(x^*; y^*) = \left(-\frac{b_1 - b_2}{m_1 - m_2}; \frac{b_1 m_2 - b_2 m_1}{m_2 - m_1}\right). \tag{2}$$

The line $y=m_3x+b_3$ also goes through point (2), therefore $y^*=m_3x^*+b_3$, hence

$$b_{3} = y^{*} - m_{3}x^{*} = \frac{b_{1}m_{2} - b_{2}m_{1}}{m_{2} - m_{1}} - m_{3} \cdot \left(-\frac{b_{1} - b_{2}}{m_{1} - m_{2}}\right)$$

$$b_{3} = \frac{b_{1}(m_{2} - m_{3}) - b_{2}(m_{1} - m_{3})}{m_{2} - m_{1}}.$$
(3)

When two straight lines are perpendicular, the product of their slopes is (-1).

If equation of side a is y=-x+1, then its slope is $k_1=-1$, hence the slope of perpendicular straight line is $k_2=\frac{-1}{k_1}=\frac{-1}{-1}=1$ and equation of the height drawn to the side a is

$$h_a: y = x + b_a \tag{4}$$

If equation of side b is $y=-\frac{2}{3}x+2$, then its slope is $k_3=-\frac{2}{3}$, hence the slope of perpendicular straight line is $k_4=\frac{-1}{k_3}=\frac{-1}{-2/3}=\frac{3}{2}$ and equation of the height drawn to the side b is

$$h_b: y = \frac{3}{2}x + b_b {(5)}$$

Straight lines h_a , b, c intersect at a single point. Using formula (3), put

 $m_1 = -\frac{2}{3}$, $b_1 = 2$, $m_2 = 4$, $b_2 = 4$, $m_3 = 1$ and we can find b_a :

$$b_{\rm a} = \frac{2(4-1)-4(-\frac{2}{3}-1)}{4+\frac{2}{3}} = \frac{19}{7}.$$
 (6)

Straight lines h_b , a, c intersect at a single point. Using formula (3) put

 $m_1 = -1, b_1 = 1, m_2 = 4, b_2 = 4, m_3 = \frac{3}{2}$ and we can find b_b :

$$b_{\rm b} = \frac{1(4-\frac{3}{2})-4(-1-\frac{3}{2})}{4+1} = 2.5. \tag{7}$$

From (4), (5), (6), (7) it follows that

$$h_a: y = x + \frac{19}{7},$$
 (8)

$$h_b: y = \frac{3}{2}x + 2.5 \tag{9}$$

Orthocentre:is the point of intersection of heights h_a , h_b . Using (8) and (9) obtain the following system of equations:

$$\begin{cases} y = x + \frac{19}{7} \\ y = \frac{3}{2}x + 2.5 \end{cases} \to \frac{3}{2}x + 2.5 = x + \frac{19}{7} \to \left(\frac{3}{2} - 1\right)x = \frac{19}{7} - 2.5 \to \frac{3}{2}x + 2.5 \to \frac{3}{2}x +$$

$$\rightarrow$$
 x = $\frac{3}{7}$; y = x + $\frac{19}{7}$ = $\frac{3}{7}$ + $\frac{19}{7}$ = $3\frac{1}{7}$

Thus, $\left(\frac{3}{7}; 3\frac{1}{7}\right)$ is orthocenter.

Answer: $\left(\frac{3}{7}, 3\frac{1}{7}\right)$.