Answer on Question \#56865 - Math - Analytic Geometry

Find the co-ordinates of the orthocentre of the triangle, the equations of whose sides are $x+$ $y=1,2 x+3 y=6,4 x-y+4=0$, without finding the co-ordinates of its vertices.

Solution

Rewrite equations $\mathrm{x}+\mathrm{y}=1,2 \mathrm{x}+3 \mathrm{y}=6,4 \mathrm{x}-\mathrm{y}+4=0$ as $y=-x+1, y=-\frac{2}{3} x+2$, $y=4 x+4$ respectively.

Given:

$$
\begin{gathered}
a: y=-x+1 \\
b: y=-\frac{2}{3} x+2 \\
c: y=4 x+4
\end{gathered}
$$

Three lines $y=m_{1} x+b_{1}, y=m_{2} x+b_{2}, y=m_{3} x+b_{3}$ intersect at a single point $\left(x^{*} ; y^{*}\right)$.

Given $\mathrm{m}_{1}, \mathrm{~b}_{1}, \mathrm{~m}_{2}, \mathrm{~b}_{2}, \mathrm{~m}_{3}$. Find b_{3}.
To find the point of intersection of straight lines

$$
\begin{equation*}
y=m_{1} x+b_{1}, y=m_{2} x+b_{2} \tag{1}
\end{equation*}
$$

equate the right-hand sides of the previous equalities:

$$
\begin{aligned}
& m_{1} x+b_{1}=m_{2} x+b_{2}, \\
& \left(m_{1}-m_{2}\right) x=b_{2}-b_{1} \\
& =>x=-\frac{b_{1}-b_{2}}{m_{1}-m_{2}} .
\end{aligned}
$$

Substitute for x into $y=m_{1} x+b_{1}$:
$y=m_{1} x+b_{1}$,
$y=m_{1} \cdot\left(-\frac{b_{1}-b_{2}}{m_{1}-m_{2}}\right)+b_{1}$,
$y=\frac{-m_{1} b_{1}+m_{1} b_{2}+b_{1} m_{1}-b_{1} m_{2}}{m_{1}-m_{2}}$,
$y=\frac{m_{1} b_{2}-b_{1} m_{2}}{m_{1}-m_{2}}$,
$\mathrm{y}=\frac{b_{1} m_{2}-b_{2} m_{1}}{m_{2}-m_{1}}$.
Thus, the point of intersection of straight lines (1) is

$$
\begin{equation*}
\left(x^{*} ; y^{*}\right)=\left(-\frac{b_{1}-b_{2}}{m_{1}-m_{2}} ; \frac{b_{1} m_{2}-b_{2} m_{1}}{m_{2}-m_{1}}\right) . \tag{2}
\end{equation*}
$$

The line $y=m_{3} x+b_{3}$ also goes through point (2), therefore $y^{*}=m_{3} x^{*}+b_{3}$, hence

$$
\begin{array}{r}
b_{3}=y^{*}-m_{3} x^{*}=\frac{b_{1} m_{2}-b_{2} m_{1}}{m_{2}-m_{1}}-m_{3} \cdot\left(-\frac{b_{1}-b_{2}}{m_{1}-m_{2}}\right) \\
b_{3}=\frac{b_{1}\left(m_{2}-m_{3}\right)-b_{2}\left(m_{1}-m_{3}\right)}{m_{2}-m_{1}} . \tag{3}
\end{array}
$$

When two straight lines are perpendicular, the product of their slopes is (-1).
If equation of side a is $y=-x+1$, then its slope is $k_{1}=-1$, hence the slope of perpendicular straight line is $k_{2}=\frac{-1}{k_{1}}=\frac{-1}{-1}=1$ and equation of the height drawn to the side a is

$$
\begin{equation*}
h_{a}: y=x+b_{a} \tag{4}
\end{equation*}
$$

If equation of side b is $y=-\frac{2}{3} x+2$, then its slope is $k_{3}=-\frac{2}{3}$, hence the slope of perpendicular straight line is $k_{4}=\frac{-1}{k_{3}}=\frac{-1}{-2 / 3}=\frac{3}{2}$ and equation of the height drawn to the side b is

$$
\begin{equation*}
h_{b}: y=\frac{3}{2} x+b_{b} \tag{5}
\end{equation*}
$$

Straight lines h_{a}, b, c intersect at a single point. Using formula (3), put
$m_{1}=-\frac{2}{3}, b_{1}=2, m_{2}=4, b_{2}=4, m_{3}=1$ and we can find b_{a} :
$b_{\mathrm{a}}=\frac{2(4-1)-4\left(-\frac{2}{3}-1\right)}{4+\frac{2}{3}}=\frac{19}{7}$.
Straight lines h_{b}, a, c intersect at a single point. Using formula (3) put
$m_{1}=-1, b_{1}=1, m_{2}=4, b_{2}=4, m_{3}=\frac{3}{2}$ and we can find b_{b} :
$b_{\mathrm{b}}=\frac{1\left(4-\frac{3}{2}\right)-4\left(-1-\frac{3}{2}\right)}{4+1}=2.5$.
From (4), (5), (6), (7) it follows that

$$
\begin{align*}
& h_{a}: y=x+\frac{19}{7} \tag{8}\\
& h_{b}: y=\frac{3}{2} x+2.5 \tag{9}
\end{align*}
$$

Orthocentre:is the point of intersection of heights h_{a}, h_{b}. Using (8) and (9) obtain the following system of equations:

$$
\begin{gathered}
\left\{\begin{array}{c}
y=x+\frac{19}{7} \\
y=\frac{3}{2} x+2.5
\end{array} \rightarrow \frac{3}{2} x+2.5=x+\frac{19}{7} \rightarrow\left(\frac{3}{2}-1\right) x=\frac{19}{7}-2.5 \rightarrow\right. \\
\rightarrow \mathrm{x}=\frac{3}{7} ; \mathrm{y}=x+\frac{19}{7}=\frac{3}{7}+\frac{19}{7}=3 \frac{1}{7}
\end{gathered}
$$

Thus, $\left(\frac{3}{7} ; 3 \frac{1}{7}\right)$ is orthocenter.
Answer: $\left(\frac{3}{7}, 3 \frac{1}{7}\right)$.

