Answer on Question #56780 – Math – Algebra

5. The function $Q(t) = Qoe^{kt}$ may be used to model radioactive decay. Q represents the quantity remaining after t years; k is the decay constant, 0.00011. How long, in years, will it take for a quantity of plutonium-240 to decay to 25% of its original amount?

A: 12,602 years B: 1,575 Years C: 3,150 years D: 9,450 years

Q(t)	Q_0
25%	100%

If *k*=0.00011, then

$Q(t) = Q_0 e^{-kt}$
$rac{Q(t)}{Q_0} = 0.25$ $e^{-kt} = 0.25$
$e^{-0.00011t} = 0.25$ -0.00011t = ln(0.25)

Solution

 $t = \frac{\ln(0.25)}{-0.00011}$ $t \approx 12,602.68$

Answer: A: 12,602 years.

4. Plutonium-240 decays according to the function Q(t)= Qoe^-kt . How long will it take 27 grams of plutonium-240 to decay to 9 grams?

K is the decay constant, 0.00011

A: 2,100 years

B: 1.44 years

C: 18,900 years

D: 9,987 years

Solution:

Q(t)	Q_0
9 g	27 g

$9 = 27e^{-kt} e^{-kt} = \frac{9}{27} = \frac{1}{3}$	
$e^{-0.00011t} = \frac{1}{3}$	1
-0.00011t = ln	2
$t = \frac{ln\frac{1}{3}}{ln\frac{1}{3}}$	J
$^{\iota}0.00011$	
$t \approx 9,937.38$	

 $Q(t) = Q_0 e^{-kt}$

If *k*=0.00011, then

www.AssignmentExpert.com