Answer on Question \#56705 - Math - Analytic Geometry

Question

Trisect the segment connecting $P(-5,2)$ and $Q(3,-4)$.

Solution

Segment PQ, that connects points $P(-5,2)$ and $Q(3,4)$, is divided into three equal parts by points $\mathrm{A}\left(x_{a}, y_{a}\right), \mathrm{B}\left(x_{b}, y_{b}\right)$.

Besides, $x_{p}<x_{a}<x_{q}, x_{p}<x_{b}<x_{q}, y_{q}<y_{a}<y_{p}, y_{q}<y_{b}<y_{p}$, that is, $-5<x_{a}<3,-5<x_{b}<3,-4<y_{a}<2,-4<y_{b}<2$.

Points P, A, B, Q lie on the one line, so
$\frac{x_{a}-x_{p}}{y_{a}-y_{p}}=\frac{x_{b}-x_{p}}{y_{b}-y_{p}}=\frac{x_{q}-x_{p}}{y_{q}-y_{p}}=\frac{8}{-6}=-\frac{4}{3}$
Length of original segment $L_{P Q}=\sqrt{\left(x_{q}-x_{p}\right)^{2}+\left(y_{q}-y_{p}\right)^{2}}=\sqrt{8^{2}+6^{2}}=$ $=10$,

Length of $L_{P A}=\frac{1}{3} L_{P Q}=\frac{10}{3}=\sqrt{\left(x_{a}-x_{p}\right)^{2}+\left(y_{a}-y_{p}\right)^{2}}=$
$\sqrt{\left(\frac{4^{2}}{3^{2}}+1\right)\left(y_{a}-y_{p}\right)^{2}}= \pm \frac{5}{3}\left(y_{a}-y_{p}\right)$, we obtain $y_{a}-y_{p}=2$ or $y_{a}-y_{p}=-2$, but the case of $y_{a}-y_{p}=2$ is impossible, because $y_{a}-y_{p}<0$. Then $y_{a}-y_{p}=-2$, hence $y_{a}=y_{p}-2=2-2=0$.

It follows from $\frac{x_{a}-x_{p}}{y_{a}-y_{p}}=-\frac{4}{3}$ and $y_{a}-y_{p}=-2$ that

$$
\begin{gathered}
x_{a}-x_{p}=-\frac{4}{3}(-2)=\frac{8}{3}, \text { hence } \\
x_{a}=\frac{8}{3}+x_{p}=\frac{8}{3}-5=-\frac{7}{3} .
\end{gathered}
$$

Similarly for

$$
L_{P B}=\frac{2}{3} L_{P Q}=\frac{20}{3}=\sqrt{\left(x_{b}-x_{p}\right)^{2}+\left(y_{b}-y_{p}\right)^{2}}=\sqrt{\left(\frac{4^{2}}{3^{2}}+1\right)\left(y_{b}-y_{p}\right)^{2}}=
$$

$\pm \frac{5}{3}\left(y_{b}-y_{p}\right)$, we obtain that $y_{b}-y_{p}=4$ or $y_{b}-y_{p}=-4$, but the case of

$$
y_{b}-y_{p}=4 \text { is impossible, because } y_{b}-y_{p}<0
$$

Then $y_{b}-y_{p}=-4$, hence $y_{b}=y_{p}-4=2-4=-2$.
It follows from $\frac{x_{b}-x_{p}}{y_{b}-y_{p}}=-\frac{4}{3}$ and $y_{a}-y_{p}=-2$ that

$$
x_{b}-x_{p}=-\frac{4}{3}(-4)=\frac{16}{3}, \text { hence }
$$

$$
x_{b}=\frac{16}{3}+x_{p}=\frac{16}{3}-5=\frac{1}{3} . \text { Thus, }\left(x_{a}, y_{a}\right)=\left(\frac{-7}{3}, 0\right),\left(x_{b}, y_{b}\right)=\left(\frac{1}{3},-2\right)
$$

Answer: the points that divided $P Q$ into three equal parts are $A\left(-\frac{7}{3}, 0\right)$ and $B\left(\frac{1}{3},-2\right)$.

