Answer on Question #56705 - Math - Analytic Geometry

Question

Trisect the segment connecting P(-5,2) and Q(3,-4).

Solution

Segment PQ, that connects points P(-5,2) and Q(3,4), is divided into three equal parts by points A(x_a , y_a), B(x_b , y_b).

Besides,
$$x_p < x_a < x_q$$
 , $x_p < x_b < x_q$, $y_q < y_a < y_p$, $y_q < y_b < y_p$, that is, $-5 < x_a < 3$, $-5 < x_b < 3$, $-4 < y_a < 2$, $-4 < y_b < 2$.

Points P, A, B, Q lie on the one line, so

$$\frac{x_a - x_p}{y_a - y_p} = \frac{x_b - x_p}{y_b - y_p} = \frac{x_q - x_p}{y_q - y_p} = \frac{8}{-6} = -\frac{4}{3}$$

Length of original segment L_{PQ} = $\sqrt{(x_q-x_p)^2+(y_q-y_p)^2}$ = $\sqrt{8^2+6^2}$ = 10,

Length of
$$L_{PA}=\frac{1}{3}L_{PQ}=\frac{10}{3}=\sqrt{(x_a-x_p)^2+(y_a-y_p)^2}=\sqrt{(\frac{4^2}{3^2}+1)(y_a-y_p)^2}=\pm\frac{5}{3}(y_a-y_p)$$
, we obtain $y_a-y_p=2$ or $y_a-y_p=-2$, but the case of $y_a-y_p=2$ is impossible, because $y_a-y_p<0$. Then $y_a-y_p=-2$, hence $y_a=y_p-2=2-2=0$.

It follows from
$$\frac{x_a - x_p}{y_a - y_p} = -\frac{4}{3}$$
 and $y_a - y_p = -2$ that

$$x_a - x_p = -\frac{4}{3}(-2) = \frac{8}{3}$$
, hence
 $x_a = \frac{8}{3} + x_p = \frac{8}{3} - 5 = -\frac{7}{3}$.

Similarly for

$$L_{PB} = \frac{2}{3}L_{PQ} = \frac{20}{3} = \sqrt{(x_b - x_p)^2 + (y_b - y_p)^2} = \sqrt{(\frac{4^2}{3^2} + 1)(y_b - y_p)^2} = \pm \frac{5}{3}(y_b - y_p), \text{ we obtain that } y_b - y_p = 4 \text{ or } y_b - y_p = -4, \text{ but the case of } y_b - y_p = 4 \text{ is impossible, because } y_b - y_p < 0.$$
 Then $y_b - y_p = -4$, hence $y_b = y_p - 4 = 2 - 4 = -2$. It follows from $\frac{x_b - x_p}{y_b - y_p} = -\frac{4}{3}$ and $y_a - y_p = -2$ that
$$x_b - x_p = -\frac{4}{3}(-4) = \frac{16}{3}, \text{ hence}$$

$$x_b = \frac{16}{3} + x_p = \frac{16}{3} - 5 = \frac{1}{3}$$
. Thus, $(x_a, y_a) = \left(\frac{-7}{3}, 0\right)$, $(x_b, y_b) = \left(\frac{1}{3}, -2\right)$.

Answer: the points that divided PQ into three equal parts are $A(-\frac{7}{3},0)$ and $B(\frac{1}{3},-2)$.