Answer on Question #56702 – Math – Linear Algebra

Question

Find a basis for the subspace W of R4, spanned by the set of vectors V1 {[1 1 0 -1]}, V2 {[0 1 2 1]}, V3 {[1 0 1 -1]}, V4 {[1 1-6 -3]} and V5 {[-1 -5 1 0]}.

Solution

Given the set

of vectors in the vector space \mathbb{R}^4 , find a basis for span S.

The set $W = \{v_1, v_2, v_3, v_4, v_5\}$ of vectors in R^4 is **linearly independent** if the only solution of

(*) $c_1v_1 + c_2v_2 + c_3v_3 + c_4v_4 + c_5v_5 = 0$

$$c_{1}\begin{bmatrix}1\\1\\0\\-1\end{bmatrix}+c_{2}\begin{bmatrix}0\\1\\2\\1\end{bmatrix}+c_{3}\begin{bmatrix}1\\0\\1\\-1\end{bmatrix}+c_{4}\begin{bmatrix}1\\1\\-6\\-3\end{bmatrix}+c_{5}\begin{bmatrix}-1\\-5\\1\\0\end{bmatrix}=\begin{bmatrix}0\\0\\0\\0\end{bmatrix}$$

 $c_1 = c_2 = c_3 = c_4 = c_5 = 0.$

Rearranging the left hand side yields

$$\begin{array}{c} 1 \ c_1 + 0 \ c_2 + 1 \ c_3 + 1 \ c_4 - 1 \ c_5 \\ 1 \ c_1 + 1 \ c_2 + 0 \ c_3 + 1 \ c_4 - 5 \ c_5 \\ 0 \ c_1 + 2 \ c_2 + 1 \ c_3 - 6 \ c_4 + 1 \ c_5 \\ - 1 \ c_1 + 1 \ c_2 - 1 \ c_3 - 3 \ c_4 + 0 \ c_5 \end{array} = \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}$$

The matrix equation above is equivalent to the following **homogeneous system of** equations

1	0	1	1	-1
1	1	0	1	-5
0	2	1	-6	1
-1	1	-1	-3	0

can be transformed by a sequence of elementary row operations to the matrix

1	0	0	3	-4
0	1	0	-2	-1
0	0	1	-2	3
0	0	0	0	0

The reduced row echelon form of the coefficient matrix of the homogeneous system (**) is

which corresponds to the system

 $1 c_1 +3 c_4 -4 c_5 = 0$ $1 c_2 -2 c_4 -1 c_5 = 0$ $1 c_3 -2 c_4 +3 c_5 = 0$ 0 = 0

The leading entries have been highlighted in yellow.

Those columns in the matrix, that do not contain leading entries, correspond to unknowns that will be arbitrary. The system has **infinitely many solutions**:

 $c_1 = -3 c_4 + 4 c_5$ $c_2 = 2 c_4 + 1 c_5$ $c_3 = 2 c_4 - 3 c_5$ $c_4 = arbitrary$ $c_5 = arbitrary$

Since the variables c_4 , c_5 are arbitrary, then each of the vectors \mathbf{v}_4 , \mathbf{v}_5 can be expressed as a linear combination of vectors in the set $\mathbf{T} = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$.

For example, set $c_4 = 1$, $c_5 = 0$, then

 $c_1 = -3, c_2 = 2, c_3 = 2.$

Use the equation (*) to express v_4 as a linear combination of the remaining vectors in the set S.

Let

$$c_1 v_1 + c_2 v_2 + c_3 v_3 + c_4 v_4 + c_5 v_5 = 0,$$

 $(-3 c_4+4 c_5) v_1+(2 c_4+1 c_5)v_2+(2 c_4-3 c_5)v_3+1v_4+0v_5=0.$

Put $c_4 = 1$, $c_5 = 0$, then

 $-3 \mathbf{v}_1 + 2\mathbf{v}_2 + 2\mathbf{v}_3 + \mathbf{v}_4 + 0\mathbf{v}_5 = 0,$

hence

 $v_4 = 3v_1 - 2v_2 - 2v_3$.

If $c_4 = 0$, $c_5 = 1$, then

 $c_1 = 4, c_2 = 1, c_3 = -3.$

Let

 $c_1 v_1 + c_2 v_2 + c_3 v_3 + c_4 v_4 + c_5 v_5 = 0,$

 $(-3 c_4+4 c_5) v_1+(2 c_4+1 c_5)v_2+(2 c_4-3 c_5)v_3+1v_4+0v_5=0.$

Put $c_4 = 0$, $c_5 = 1$, then

$$4 \mathbf{v}_1 + \mathbf{v}_2 + -3\mathbf{v}_3 + 0\mathbf{v}_4 + \mathbf{v}_5 = 0,$$

hence

 $v_5 = -4 v_1 - v_2 + 3 v_3$.

Since the set $T = {v_1, v_2, v_3}$ is **linearly independent** and it **spans span W**, then the set

$$\mathbf{T} = \left\{ \begin{array}{c|cccc} 1 & & 0 & & 1 \\ 1 & & 1 & & 0 \\ 0 & & 2 & & 1 \\ -1 & & 1 & -1 \end{array} \right\}$$

forms a basis for span W.

Answer:

$$\mathbf{T} = \{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ -1 \end{bmatrix} \}$$

Question

What is the dimension of W?

Solution

The dimension of W is 3 (number of nonzero rows).

Question

Let W be the subspace of P3 spanned by: $\{t^3 + t^2 - 2t + 1, t^2 + 1, t^3 - 2t, 2t^3 + 3t^2 - 4t + 3\}.$ (i) Find a basis for W. (ii) What is the dimension of W?

Solution

As the columns of matrix containing leading entries are the first and the second columns, the first and the second polynomial form a basis for W. That is, the set $\{t \wedge 3 + t \wedge 2 - 2t + 1, t \wedge 2 + 1\}$ is a basis for W. Thus the dimension of W is 2. **Answer: (i)** $\{t \wedge 3 + t \wedge 2 - 2t + 1, t \wedge 2 + 1\}$; (ii) 2.

www.AssignmentExpert.com