Answer on Question \#56700 - Math- Combinatorics | Number Theory

23. Consider $x y z=24$, where $x, y, z \in I$, then
(a) Total number of positive integral solutions for x, y, z are 81
(b) Total number of positive integral solutions for x, y, z are 90
(c) Total number of positive integral solutions for x, y, z are 30
(d) Total number of positive integral solutions for x, y, z are 120

Solution

Because $24=2^{3} \cdot 3^{1}$, then there are 4 prime positive divisors of 24 . It follows, that total number of positive integer solutions for x, y, z is $\overline{A_{3}^{4}}=3^{4}=81$. The total number of all integer solutions for x, y, z is $81 \cdot 2^{3}=81 \cdot 8=648$.

Answer: (a).
24: If ${ }^{n} C_{r+1}=\left(m^{2}-8\right) \cdot{ }^{n-1} C_{r}$; then possible value of ' m ' can be
(a) 4 (b) 2 (c) 3 (d) -5

Solution

We have:
${ }^{n} C_{r+1}=\frac{n!}{(n-r-1)!(r+1)!}=\frac{n \cdot(n-1)!}{(r+1) \cdot(n-r-1)!r!}=\left(m^{2}-8\right) \cdot{ }^{n-1} C_{r}=\left(m^{2}-8\right) \cdot \frac{(n-1)!}{(n-r-1)!r!}{ }^{\prime}$
hence

$$
n=\left(m^{2}-8\right)(r+1)
$$

and $\frac{n}{r+1}$ must be a positive integer, $1<\frac{n}{r+1} \leq n$, hence $m^{2}-8>1$, that is, $m^{2}>9$.
Thus, $m \neq 2, m \neq 3$, and possible value of ' m ' can be $\mathbf{4}$ (for $n=16, r=1$, for example) or (-5) (for $n=17, r=0$, for example).

Answer: (a) or (d).

