Answer on Question \#56699-Math - Combinatorics |Number Theory

21. Total number of four letters words that can be formed from the letters word 'DPSRKPURAM', is given by:
(a) ${ }^{10} C_{4}$. (4!)
(b) 2190
(c) Coefficient of x^{4} in $\left\{4\right.$!. $\left.\left(1+x+x^{2}\right)(1+x)^{6}\right\}$
(d) Coefficient of x^{4} in $\left\{3\right.$!. $\left.(1+x)^{6}\left(1+(x+1)^{2}\right)^{2}\right\}$.

Solution

Case 1: all four letters distinct. There are 8 different letters in our long word. We can choose 4 distinct letters in $\binom{8}{4}$ ways, and for each way arrange them in 4 ! ways, for a total of $\binom{8}{4} 4$!.
Case 2: two P's, the rest distinct. We can choose the places where the P's go in $\binom{4}{2}$ ways. For each such choice, there are (7)(6) ways to fill the remaining slots with two distinct letters chosen from the remaining 7. Case 3: two R's , the rest distinct. The same analysis, answer as in Case 2.
Case 4: Two P's, two R's. The places, where the P's go, can be chosen in $\binom{4}{2}$ ways.
Total number to form four letter words:
$\binom{8}{4} 4!+2 \cdot\binom{4}{2}(7)(6)+\binom{4}{2}=\frac{8!4!}{4!4!}+\frac{84 \cdot 4!}{2!2!}+\frac{4!}{2!2!}=8 \cdot 7 \cdot 6 \cdot 5+84 \cdot 6+6=2190$
Notice that 3!. $(1+x)^{6}\left(1+(x+1)^{2}\right)^{2}=6 x^{10}+60 x^{9}+282 x^{8}+816 x^{7}+1602 x^{6}+2220 x^{5}+$ $2190 x^{4}+1512 x^{3}+696 x^{2}+192 x+24$
Answer: (d) Coefficient of x^{4} in $\left\{3!(1+x)^{6}\left(1+(x+1)^{2}\right)^{2}\right\}$.
22. Consider seven digit number $x_{1} x_{2} x_{3} x_{4} \ldots x_{7}$, where $x_{1}, x_{2}, \ldots, x_{7} \neq 0$, having the property that x_{4} is the greatest digit and digits towards the left and right of x_{4} are in decreasing order, then total number of such numbers in which all digits are distinct is given by:
(a) ${ }^{9} C_{7} \cdot{ }^{6} C_{3}$
(b) ${ }^{9} C_{2} \cdot{ }^{6} C_{4}$
(c) $3 .{ }^{9} C_{7} \cdot{ }^{5} C_{1}$
(d) $2 .{ }^{9} C_{2} \cdot{ }^{5} C_{2}$.

Solution

There are 9 different numbers which we can use. We can choose 7 distinct numbers in ${ }^{9} C_{7}=\binom{9}{7}$ ways. One of them will be the greatest, so we must divide rest 6 digits for two groups. We can choose 3 digits from 6 in ${ }^{6} C_{3}=\binom{6}{3}$ ways. By multiplication principle, the total number is ${ }^{9} C_{7} \cdot{ }^{6} C_{3}=\binom{9}{7}\binom{6}{3}$.
Answer: (a) $\binom{9}{7}\binom{6}{3}$.

