Answer on Question #56698 – Math – Combinatorics | Number Theory

13. Let three lines L_1 , L_2 , L_3 be given by 2x + 3y = 2, 4x + 6y = 5, 6x + 9y = 10 respectively. If line L_r contains 2^r different points on it, where $r \in \{1,2,3\}$, then maximum number of triangles which can be formed with vertices at the given points on the lines, are given by:

(a) 320 (b) 304 (c) 364 (d) 360

Solution

Lines L_r , $r \in \{1,2,3\}$ are parallel. L_1 contains 2 points, L_2 contains 4 points and L_3 contains 8 points.

To form triangles we must take 3 points and these 3 points can't lie on one line.

We use combinations, because the order of points isn't important for us:

$$C_n^k = \frac{n!}{k!(n-k)!}$$

Possible cases:

- 1. 2 points from L_1 , 1 point from L_2 . The number of such triangles is equal to $C_2^2 C_4^1 = 1 \cdot \frac{4!}{3!} = 4$.
- 2. 2 points from L_1 , 1 point from L_3 . The number of such triangles is equal to $C_2^2 C_8^1 = 1.8 = 8$.
- 3. 1 point from L_1 , 2 points from L_2 . The number of such triangles is equal to $C_2^1 C_4^2 = 2.6 = 12$.
- 4. 1 point from L_1 , 2 points from L_3 . The number of triangles: $C_2^1 C_8^2 = 2.28 = 56$.
- 5. 1 point from L_1 , 1 point from L_2 , 1 point from L_3 . The number of such triangles is equal to $C_2^1 C_4^1 C_8^1 = 2 \cdot 4 \cdot 8 = 64$.
- 6. 2 points from L_2 , 1 point from L_3 . The number of such triangles is equal to $C_4^2 C_8^1 = 6.8 = 48$.
- 7. 1 point from L_2 , 2 points from L_3 . The number of such triangles is equal to $C_4^1 C_8^2 = 4.28 = 112$.

The total number of triangles is equal to

N=4+8+12+56+64+48+112=304

 $\mathsf{N} = \mathcal{C}_2^2(\mathcal{C}_4^1 + \mathcal{C}_8^1) + \mathcal{C}_2^1(\mathcal{C}_4^2 + \mathcal{C}_8^2 + \mathcal{C}_4^1\mathcal{C}_8^1) + \mathcal{C}_4^2\mathcal{C}_8^1 + \mathcal{C}_4^1\mathcal{C}_8^2 =$

= 12+132+48+112= 304.

Answer: (b) 304.

20. Total number of ways of selecting two numbers from the set of {1,2,3,4,...,3n} so that their sum is divisible by 3 is equal to:

(a)
$$3n^2 - n$$
 (b) $\frac{3n^2 - n}{2}$ (c) $\frac{2n^2 - n}{2}$ (d) $2n^2 - n$

Solution

Let S_n be the total number of ways of selecting two numbers from the 3n elements.

$$S_n = C_{3n}^2 = \frac{3n(3n-1)}{2!}$$
, n=2,3, ... Then S_2 =15, S_3 =36, etc.

Let A_n is a set of such pairs of number which sum is divisible by 3, n=2,3,...

Let a = 3m + k and b = 3n + l, then

$$a + b = (3m + k) + (3n + l) = (3m + 3n) + k + l$$

Is divisible by 3 if k + l is divisible by 3.

Then

 A_2 = ({1,2}, {1,5}, {2,4}, {4,5}, {3,6}), the number of its elements is $|A_2|$ =5;

 $A_3 = A_2 \cup (\{1,8\}, \{2,7\}, \{3,9\}, \{4,8\}, \{5,7\}, \{7,8\}, \{6,9\}), \text{ the number of its elements is } |A_3| = 12$ and so on.

We have the following answer:

$$|A_n| = \frac{S_n}{3} = \frac{3n^2 - n}{2}$$
.
Answer: (b) $\frac{3n^2 - n}{2}$.