Answer on Question \#56698 - Math - Combinatorics |Number Theory

13. Let three lines L_{1}, L_{2}, L_{3} be given by $2 x+3 y=2,4 x+6 y=5,6 x+9 y=10$ respectively. If line L_{r} contains 2^{r} different points on it, where $r \in\{1,2,3\}$, then maximum number of triangles which can be formed with vertices at the given points on the lines, are given by:
(a) 320
(b)304
(c) 364
(d) 360

Solution

Lines $L_{r}, r \in\{1,2,3\}$ are parallel. L_{1} contains 2 points, L_{2} contains 4 points and L_{3} contains 8 points.

To form triangles we must take 3 points and these 3 points can't lie on one line.

We use combinations, because the order of points isn't important for us:

$$
C_{n}^{k}=\frac{n!}{k!(n-k)!}
$$

Possible cases:

1. 2 points from $L_{1}, 1$ point from L_{2}.

The number of such triangles is equal to $C_{2}^{2} C_{4}^{1}=1 \cdot \frac{4!}{3!}=4$.
2. 2 points from $L_{1}, 1$ point from L_{3}.

The number of such triangles is equal to $C_{2}^{2} C_{8}^{1}=1 \cdot 8=8$.
3. 1 point from $L_{1}, 2$ points from L_{2}.

The number of such triangles is equal to $C_{2}^{1} C_{4}^{2}=2 \cdot 6=12$.
4. 1 point from $L_{1}, 2$ points from L_{3}.

The number of triangles: $C_{2}^{1} C_{8}^{2}=2 \cdot 28=56$.
5. 1 point from $L_{1}, 1$ point from $L_{2}, 1$ point from L_{3}.

The number of such triangles is equal to $C_{2}^{1} C_{4}^{1} C_{8}^{1}=2 \cdot 4 \cdot 8=64$.
6. 2 points from $L_{2}, 1$ point from L_{3}.

The number of such triangles is equal to $C_{4}^{2} C_{8}^{1}=6 \cdot 8=48$.
7. 1 point from $L_{2}, 2$ points from L_{3}.

The number of such triangles is equal to $C_{4}^{1} C_{8}^{2}=4 \cdot 28=112$.
The total number of triangles is equal to
$N=4+8+12+56+64+48+112=304$
$\mathrm{N}=C_{2}^{2}\left(C_{4}^{1}+C_{8}^{1}\right)+C_{2}^{1}\left(C_{4}^{2}+C_{8}^{2}+C_{4}^{1} C_{8}^{1}\right)+C_{4}^{2} C_{8}^{1}+C_{4}^{1} C_{8}^{2}=$
$=12+132+48+112=304$.

Answer: (b) 304.
20. Total number of ways of selecting two numbers from the set of $\{1,2,3,4, \ldots, 3 n\}$ so that their sum is divisible by 3 is equal to:
(a) $3 n^{2}-n$
(b) $\frac{3 n^{2}-n}{2}$
(c) $\frac{2 n^{2}-n}{2}$
(d) $2 n^{2}-n$

Solution

Let S_{n} be the total number of ways of selecting two numbers from the $3 n$ elements.
$S_{n}=C_{3 n}^{2}=\frac{3 n(3 n-1)}{2!}, \mathrm{n}=2,3, \ldots$ Then $S_{2}=15, S_{3}=36$, etc.
Let A_{n} is a set of such pairs of number which sum is divisible by $3, \mathrm{n}=2,3, \ldots$
Let $a=3 m+k$ and $b=3 n+l$, then

$$
a+b=(3 m+k)+(3 n+l)=(3 m+3 n)+k+l
$$

Is divisible by 3 if $k+l$ is divisible by 3 .
Then
$A_{2}=(\{1,2\},\{1,5\},\{2,4\},\{4,5\},\{3,6\})$, the number of its elements is $\left|A_{2}\right|=5$;
$A_{3}=A_{2} \cup(\{1,8\},\{2,7\},\{3,9\},\{4,8\},\{5,7\},\{7,8\},\{6,9\})$, the number of its elements is $\left|A_{3}\right|=12$ and so on.

We have the following answer:

$$
\left|A_{n}\right|=\frac{S_{n}}{3}=\frac{3 n^{2}-n}{2} .
$$

Answer: (b) $\frac{3 n^{2}-n}{2}$.

