Answer on Question \#56687 - Math - Combinatorics \| Number Theory

6. If the L.C.M. of ' α^{\prime} and ' β^{\prime} is $p^{2} q^{4} r^{3}$, where p, q, r are prime numbers and $\alpha, \beta \in I^{+}$, then the number of ordered pairs (α, β) are:
(a) 225
(b) 420
(c) 315
(d) 192

Solution

Let us consider the numbers α and β in the form $p^{a^{\prime}} q^{b^{\prime}} r^{c^{\prime}}$, where $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are prime numbers and $\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{c}^{\prime}$ are nonnegative integers. Let their LCM be equal to $p^{a} q^{b} r^{c}$ that is a^{\prime}, $\mathrm{b}^{\prime}, \mathrm{c}^{\prime}$ must belong to the sets $0 \leq a^{\prime} \leq a, 0 \leq b^{\prime} \leq b, 0 \leq c^{\prime} \leq c$. Let in the pair (α, β) with $\operatorname{LCM}(\alpha, \beta)=p^{a} q^{b} r^{c}$ the multipliers $A=q^{b^{\prime}} r^{c^{\prime}}, B=q^{b^{\prime \prime}} r^{c^{\prime \prime}}$ be fixed (here $\alpha=p^{a^{\prime}} A$ and $\beta=p^{a^{\prime \prime}} B$). Then numbers with such a form can have $\operatorname{LCM}(\alpha, \beta)=p^{a} q^{b} r^{c}$ in the following cases: either

$$
a^{\prime}=a, \quad 0 \leq a^{\prime \prime} \leq a, \quad \text { i.e. } a+1 \text { numbers, }
$$

or

$$
0 \leq a^{\prime} \leq a, \quad a^{\prime \prime}=a, \quad \text { i.e. } a+1 \text { numbers }
$$

(the pair with $a^{\prime}=a, a^{\prime \prime}=a$ enters into both sets).
Consequently, the number of pairs (α, β) with fixed A and B is equal to

$$
2(a+1)-1=2 a+1
$$

where we have excluded the pair with $a^{\prime}=a, a^{\prime \prime}=a$ that has been counted twice.
In a similar way the number of pairs $\alpha=q^{b^{\prime}} C, \beta=q^{b^{\prime \prime}} D$ (C, D fixed) is equal to $2 b+1$ and the number of pairs $\alpha=r^{c^{\prime}} E, \beta=r^{c^{\prime \prime}} F(\mathrm{E}, \mathrm{F}$ fixed) is equal to $2 c+1$.

Since p, q, r are prime numbers, the above choices

$$
\begin{aligned}
& a^{\prime}=a, \quad 0 \leq a^{\prime \prime} \leq a \\
& 0 \leq a^{\prime} \leq a, \quad a^{\prime \prime}=a
\end{aligned}
$$

and similar choices for $b^{\prime}, b^{\prime \prime}, c^{\prime}, c^{\prime \prime}$, can be made independently and therefore the number of ordered pairs (α, β) with $\operatorname{LCM}(\alpha, \beta)=p^{a} q^{b} r^{c}$ is equal to

$$
P(a, b, c)=(2 a+1)(2 b+1)(2 c+1) .
$$

In the suggested question $a=2, b=4, c=3$ and we get

$$
P=5 \cdot 9 \cdot 7=315
$$

Answer: (c), number of ordered pairs is equal to 315.
7. Total number of non-negative integral solutions of $18<x_{1}+x_{2}+x_{3} \leq 20$, is given by: $\begin{array}{llll}\text { (a) } 1245 & \text { (b) } 685 & \text { (c) } 1150 & \text { (d) } 441\end{array}$

Solution
This number is equal to the sum of numbers of solutions of two equations

$$
x_{1}+x_{2}+x_{3}=19
$$

or

$$
x_{1}+x_{2}+x_{3}=20
$$

Let us consider the first one: $x_{1}+x_{2}+x_{3}=19$.
If $x_{1}=0$, then $x_{2}+x_{3}=19$ has 20 solutions $(0,19),(1,18), \ldots,(18,1),(19,0)$.
If $x_{1}=1$, then $x_{2}+x_{3}=18$ has 19 solutions $(0,18),(1,17), \ldots,(17,1),(18,0)$.

If $x_{1}=19$, then $x_{2}+x_{3}=0$ has 1 solution $(0,0)$.
Thus, the number of solutions of this equation is equal to

$$
20+19+\cdots+1=\frac{20 \cdot 21}{2}=210 .
$$

In a similar way, the number of solutions of the equation $x_{1}+x_{2}+x_{3}=20$ is equal to

$$
21+20+\cdots+1=\frac{21 \cdot 22}{2}=231
$$

Consequently, the total number of solutions of inequality $18<x_{1}+x_{2}+x_{3} \leq 20$ is equal to $210+231=441$.

Answer: (d), total number of non-negative integral solutions is equal to 441.

