Answer on Question \#56686 - Math - Combinatorics | Number Theory

3. The coefficient of x^{1502} in the expansion of $\left\{\left(1+x+x^{2}\right)^{2007}(1-x)^{2008}\right\}$ is
(a) ${ }^{2007} C_{501}=$
$-{ }^{2006} C_{500}$
${ }^{2006} C_{500}-{ }^{2006} C_{501}$
(c) ${ }^{2007} C_{498}-{ }^{2006} C_{499}$
(d) ${ }^{2007} C_{501}-{ }^{2006} C_{1506}$

Solution. So as

$$
\begin{aligned}
&\left(1+x+x^{2}\right)^{2007}(1-x)^{2008}=\left(1+x+x^{2}\right)^{2007}(1-x)^{2007}(1-x)=\left(1-x^{3}\right)^{2007}(1-x), \\
&\left(1-x^{3}\right)^{2007}=\sum_{k=0}^{2007}{ }^{2007} C_{k}(-1)^{k} x^{3 k},
\end{aligned}
$$

hold and $1502=3 \cdot 500+2$, then we have that the coefficient of x^{1502} in the expansion of given expressions is equal to zero. Among all given answers only d ${ }^{2007} C_{501}-{ }^{2007} C_{1506}$ is zero

Answer: (d) ${ }^{2007} C_{501}-{ }^{2007} C_{1506}=0$.
4. X and Y are any 2 five digits numbers, total number of ways of forming X and Y with repetition, so that these numbers can be added without using the carrying operation at any stage, is equal to
(a) $45 \cdot 55^{4}$
(b) $36 \cdot 55^{4}$
(c) 55^{5}
(d) $51 \cdot 55^{4}$

Solution. Total number of ways of a choice for the last figures of numbers X and Y is equal to

$$
1+2+3+\cdots+8+9+10=\frac{1+10}{2} \cdot 10=55
$$

It will be similar for the second figures, the third figures and the fourth figures of these numbers since the end. For the first figures we have

$$
1+2+3+\cdots+8=\frac{1+8}{2} \cdot 8=36
$$

ways of a choice. Thus, total number of ways of forming X and Y with repetition, so that these numbers can be added without using the carrying operation at any stage, is equal to $36 \cdot(55)^{4}$
Answer: $(b): 36 \cdot(55)^{4}$.

