## Answer on Question \#56685 - Math - Combinatorics | Number Theory

1. The letters of the word 'GHAJINI' are permuted and all the permutations are arranged in a alphabetical order as in an English dictionary, then total number of words that appear after the word 'GHAJINI' is given by:
(a) 2093
(b) 2009
(c) 2092
(d) 2091

## Solution

After the word 'GHAJINI' we must write 'GHAJNII' (1 word). Then we write the words 'GHAN***' $\left({ }^{3} \bar{P}(2)=\frac{3!}{2!}=3\right.$ words), the words 'GHI****' ( ${ }^{4} P=4!=24$ words), the words ${ }^{\prime} \mathrm{GH}\binom{J}{N}$ )**' $\left(2 \cdot{ }^{4} \bar{P}(2)=2 \cdot \frac{4!}{2!}=24\right.$ words), the words 'G1*****' ( ${ }^{5} P=5!=120$ words $)$, the words ' $\mathrm{G}\binom{J}{N}$ *****' $\left(2 \cdot{ }^{5} \bar{P}(2)=2 \cdot \frac{5!}{2!}=120\right.$ words $)$, the words ${ }^{\prime}\left(\begin{array}{l}H \\ J \\ N\end{array}\right) * * * * * * '\left(3 \cdot{ }^{6} \bar{P}(2)=3 \cdot \frac{6!}{2!}=\right.$ $3 \cdot 360=1080$ words) and the words ' $I^{* * * * * * ' ~(~}{ }^{6} P=6!=720$ words). Thus, total number of words that appear after the word 'GHAJINI' is given by

$$
720+1080+120+120+24+24+3+1=2092
$$

Answer: (c): 2092.
2. If John is allowed to select at most $(n+1)$ chocolates from a collection of $(2 n+2)$ distinct chocolates, then total number of ways by which John can select at least two chocolates are given by:
(a) $4^{n}+4 \cdot{ }^{2 n+1} C_{n}-2 n+1$ (b) $2 \cdot 4^{n}+4 \cdot{ }^{2 n+1} C_{n}-2 n+3$
$\begin{array}{ll}\text { (c) } 2 \cdot 4^{n}-{ }^{2 n+1} C_{n}-2 n-3 & \text { (d) } 2 \cdot 4^{n}+{ }^{2 n+1} C_{n}-2 n-3\end{array}$

## Solution

Total number of ways by which John can select at least 2 and at most $(n+1)$ chocolates are given by

$$
{ }^{2 n+2} C_{2}+{ }^{2 n+2} C_{3}+\cdots+{ }^{2 n+2} C_{n+1} .
$$

Let it be equal to $x$. So as

$$
{ }^{2 n+2} C_{2}+{ }^{2 n+2} C_{3}+\cdots+{ }^{2 n+2} C_{n+1}={ }^{2 n+2} C_{2 n}+{ }^{2 n+2} C_{2 n-1}+\cdots+{ }^{2 n+2} C_{n+1}
$$

and

$$
{ }^{2 n+2} C_{0}+{ }^{2 n+2} C_{1}+\cdots+{ }^{2 n+2} C_{2 n+1}+{ }^{2 n+2} C_{2 n+2}=2^{2 n+2},
$$

hold, then

$$
2^{2 n+2}=2 x+2 \cdot\left({ }^{2 n+2} C_{0}+{ }^{2 n+2} C_{1}\right)-{ }^{2 n+2} C_{n+1}
$$

and $\quad x=2^{2 n+1}-\left({ }^{2 n+2} C_{0}+{ }^{2 n+2} C_{1}\right)+\frac{1}{2}{ }^{2 n+2} C_{n+1}=2 \cdot 4^{n}-1-2 n-2+{ }^{2 n+1} C_{n+1}=$ $=2 \cdot 4^{n}-2 n-3+{ }^{2 n+1} C_{n+1}$.

Answer: (d) $2(4)^{n}+{ }^{2 n+1} C_{n+1}-2 n-3$.

