Answer on Question \#56612 - Math - Combinatorics | Number Theory

8. If a be the sum of the odd terms and b be the sum of the even terms in the expansion of $(1+x)^{n}$, then $\left(1-x^{2}\right)^{n}$ is equal to
(A) $a^{2}-b^{2}$ (B) $a^{2}+b^{2}$
(C) $b^{2}-a^{2}$
(D) none

Solution

Because

$$
\left(1-x^{2}\right)^{n}=(1+x)^{n}(1-x)^{n}
$$

$(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\cdots+{ }^{n} C_{n-1} x^{n-1}+{ }^{n} C_{n} x^{n}=a+b$,
$(1-x)^{n}={ }^{n} C_{0}-{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}-\cdots+(-1)^{n-1}{ }^{n} C_{n-1} x^{n-1}+(-1)^{n}{ }^{n} C_{n-1} x^{n}=a-b$,
hold, then

$$
\left(1-x^{2}\right)^{n}=(1+x)^{n}(1-x)^{n}=(a+b)(a-b)=a^{2}-b^{2}
$$

Answer: (A): $a^{2}-b^{2}$.
9. The sum of the coefficient of all the even powers of x in the expancion of $\left(2 x^{2}-3 x+1\right)^{11}$ is
(A) $2 \cdot 6^{10}$ (B) $3 \cdot 6^{10}$
(C) 6^{11}
(D) none

Solution

If we denote $P(\mathrm{x})=\left(2 \mathrm{x}^{2}-3 \mathrm{x}+1\right)^{11}=\sum_{k+l+m=0}^{11} \frac{11!}{k!!m!}\left(2 x^{2}\right)^{k}(-3 x)^{l} 1^{m}$, then $P(-\mathrm{x})=\left(2 \mathrm{x}^{2}+3 \mathrm{x}+1\right)^{11}$.
These polynomials are different from each other only with respect to the sign of coefficients by the odd powers of x.

Then the expansion of

$$
Q(x)=P(\mathrm{x})-P(-x)
$$

only consists of the odd powers of x, the sum of their coefficients is equal to

$$
Q(1)=P(1)-P(-1)=-6^{11}
$$

It follows that the sum of the coefficients of all odd powers of x in the expancion of $P(x)$ is equal to

$$
\frac{1}{2} \cdot\left(-6^{11}\right)
$$

The sum of all coefficients in the expansion of $P(x)$ is equal to $P(1)=0$. Thus, the sum of the coefficient of all the even powers of x is equal to $0-\frac{1}{2} \cdot\left(-6^{11}\right)=\frac{1}{2} \cdot 6^{11}=3 \cdot 6^{10}$.

Answer: (B): $3 \cdot 6^{10}$.

