Answer on Question #56612 – Math – Combinatorics | Number Theory

8. If *a* be the sum of the odd terms and *b* be the sum of the even terms in the expansion of $(1 + x)^n$, then $(1 - x^2)^n$ is equal to

(A) $a^2 - b^2$ (B) $a^2 + b^2$ (C) $b^2 - a^2$ (D) none

Solution

Because

 $(1-x^2)^n = (1+x)^n (1-x)^n,$ $(1+x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_{n-1}x^{n-1} + {}^nC_nx^n = a+b,$ $(1-x)^n = {}^nC_0 - {}^nC_1x + {}^nC_2x^2 - \dots + (-1)^{n-1} {}^nC_{n-1}x^{n-1} + (-1)^n {}^nC_{n-1}x^n = a-b,$ hold, then

$$(1 - x^2)^n = (1 + x)^n (1 - x)^n = (a + b)(a - b) = a^2 - b^2$$

Answer: (A): $a^2 - b^2$.

9. The sum of the coefficient of all the even powers of x in the expansion of $(2x^2 - 3x + 1)^{11}$ is

(A) $2 \cdot 6^{10}$ (B) $3 \cdot 6^{10}$ (C) 6^{11} (D) none

Solution

If we denote $P(\mathbf{x}) = (2\mathbf{x}^2 - 3\mathbf{x} + 1)^{11} = \sum_{k+l+m=0}^{11} \frac{11!}{k!l!m!} (2x^2)^k (-3x)^l 1^m$, then $P(-\mathbf{x}) = (2\mathbf{x}^2 + 3\mathbf{x} + 1)^{11}$.

These polynomials are different from each other only with respect to the sign of coefficients by the odd powers of x.

Then the expansion of

$$Q(x) = P(x) - P(-x)$$

only consists of the odd powers of x, the sum of their coefficients is equal to

$$Q(1) = P(1) - P(-1) = -6^{12}$$

It follows that the sum of the coefficients of all odd powers of x in the expansion of P(x) is equal to

$$\frac{1}{2} \cdot (-6^{11}).$$

The sum of all coefficients in the expansion of P(x) is equal to P(1) = 0. Thus, the sum of the coefficient of all the even powers of x is equal to $0 - \frac{1}{2} \cdot (-6^{11}) = \frac{1}{2} \cdot 6^{11} = 3 \cdot 6^{10}$.

Answer: (B):
$$3 \cdot 6^{10}$$