Answer on Question \#56611 - Math - Combinatorics | Number Theory

The sum of the coefficients in the expansion $\left(1-2 x+5 x^{2}\right)^{n}$ is ' a ' and sum of the coefficients in the expansion $(1+x)^{2 n}$ is ' b '. Then
(A) $a=b$ (B) $a=b^{2}$ (C) $a^{2}=b$ (D) $a b=1$

Solution

Method 1

Prove by mathematical induction that $a=b$.

1) $n=1$:

$$
\begin{aligned}
& \left(1-2 x+5 x^{2}\right)^{1}: a=4 \\
& (1+x)^{2}=1+2 x+x^{2}: b=4 . \\
& a=b=4: \text { it's true. }
\end{aligned}
$$

2) Assume that for $n=k$ it is true. Let the sum of the coefficients in the expansion $\left(1-2 x+5 x^{2}\right)^{n}$ be 'a1' and sum of the coefficients in the expansion be 'b1'. a1=b1 is true.
3) $n=k+1$:
$\left(1-2 x+5 x^{2}\right)^{k+1}=\left(1-2 x+5 x^{2}\right)^{k}\left(1-2 x+5 x^{2}\right)$.
Then $a=a 1 *(1-2+5)=4 a 1$.
$(1+x)^{2(k+1)}=(1+x)^{2 k}(1+x)^{2}$.
Then $b=\mathrm{b} 1^{*}(1+1)^{\wedge} 2=4 \mathrm{~b} 1=4 \mathrm{a} 1=a$.
By mathematical induction, we proved that $a=b$.
Answer: $a=b$.

Method 2

$$
\begin{aligned}
& \left(1-2 x+5 x^{2}\right)^{n}=\sum_{k+l=m=0}^{n} \frac{n!}{k!!!m!} 1^{k}(-2 x)^{l}\left(5 x^{2}\right)^{m}, \\
& (1+x)^{2 n}=\sum_{k=0}^{2 n} \frac{(2 n)!}{k!(2 n-k)!} 1^{k} x^{2 n-k} .
\end{aligned}
$$

To find the sum of coefficients in each expansion, put $x=1$ in both formulas.
If the sum of the coefficients in the expansion $\left(1-2 x+5 x^{2}\right)^{n}$ is a and the sum of the coefficients in the expansion $(1+x)^{2 n}$ is b, then $(1-2+5)^{n}=4^{n}=a \quad$ and $(1+1)^{2 n}=2^{2 n}=4^{n}=b$. Thus, $a=b$.

Answer: $a=b$.

