Answer on Question #56512 - Math - Statistics and Probability

Question

Paul, Joe and Ken are playing soccer. The probability that Paul scores a goal is ¼, that of Joe scoring is 3/5 and that Ken scoring a goal is 4/7. Find the probability that in a soccer game: i. Only two scores a goal

ii. Two of them score a goal

iii. None of them score a goal

in At least one of them scores as

iv. At least one of them scores a goal

Solution

Let

A="Paul scores a goal", \overline{A} = "Paul does not score a goal", B="Joe scores a goal", \overline{B} = "Joe does not score a goal", C="Ken scores a goal", \overline{C} = "Ken does not score a goal". It is given that $P(A) = \frac{1}{4}$, $P(B) = \frac{3}{5}$, $P(C) = \frac{4}{7}$, hence

 $P(\bar{A}) = 1 - P(A) = 1 - \frac{1}{4} = \frac{3}{4}, P(\bar{B}) = 1 - P(B) = 1 - \frac{3}{5} = \frac{2}{5}, P(\bar{C}) = 1 - P(C) = 1 - \frac{4}{7} = \frac{3}{7}.$ We can use product rule to fill the next table.

Paul scores a	Joe scores a	Ken scores a	Probability
goal	goal	goal	
$\operatorname{Yes}\left(\frac{1}{4}\right)$	$\operatorname{Yes}\left(\frac{3}{5}\right)$	$\operatorname{Yes}\left(\frac{4}{7}\right)$	$P(ABC) = \frac{1}{4} \cdot \frac{3}{5} \cdot \frac{4}{7} = \frac{12}{140}$
$\operatorname{Yes}\left(\frac{1}{4}\right)$	$\operatorname{Yes}\left(\frac{3}{5}\right)$	No $\left(\frac{3}{7}\right)$	$P(AB\bar{C}) = \frac{1}{4} \cdot \frac{3}{5} \cdot \frac{3}{7} = \frac{9}{140}$
$\operatorname{Yes}\left(\frac{1}{4}\right)$	No $\left(\frac{2}{5}\right)$	$\operatorname{Yes}\left(\frac{4}{7}\right)$	$P(A\bar{B}C) = \frac{1}{4} \cdot \frac{2}{5} \cdot \frac{4}{7} = \frac{8}{140}$
$\operatorname{Yes}\left(\frac{1}{4}\right)$	No $\left(\frac{2}{5}\right)$	No $\left(\frac{3}{7}\right)$	$P(A\bar{B}\bar{C}) = \frac{1}{4} \cdot \frac{2}{5} \cdot \frac{3}{7} = \frac{6}{140}$
No $\left(\frac{3}{4}\right)$	$\operatorname{Yes}\left(\frac{3}{5}\right)$	$\operatorname{Yes}\left(\frac{4}{7}\right)$	$P(\bar{A}BC) = \frac{3}{4} \cdot \frac{3}{5} \cdot \frac{4}{7} = \frac{36}{140}$
No $\left(\frac{3}{4}\right)$	$\operatorname{Yes}\left(\frac{3}{5}\right)$	No $\left(\frac{3}{7}\right)$	$P(\bar{A}B\bar{C}) = \frac{3}{4} \cdot \frac{3}{5} \cdot \frac{3}{7} = \frac{27}{140}$
No $\left(\frac{3}{4}\right)$	No $\left(\frac{2}{5}\right)$	$\operatorname{Yes}\left(\frac{4}{7}\right)$	$P(\bar{A}\bar{B}C) = \frac{3}{4} \cdot \frac{2}{5} \cdot \frac{4}{7} = \frac{24}{140}$
$\operatorname{No}\left(\frac{3}{4}\right)$	No $\left(\frac{2}{5}\right)$	No $\left(\frac{3}{7}\right)$	$P(\bar{A}\bar{B}\bar{C}) = \frac{3}{4} \cdot \frac{2}{5} \cdot \frac{3}{7} = \frac{18}{140}$

i. The probability that only two score ball equals $P(AB\bar{C}) + P(\bar{A}BC) + P(A\bar{B}C) = \frac{9}{140} + \frac{36}{140} + \frac{8}{140} \approx 0.3786.$ ii. The probability that two of them score ball equals $P(AB\bar{C}) + P(\bar{A}BC) + P(A\bar{B}C) + P(ABC) = \frac{9}{140} + \frac{36}{140} + \frac{8}{140} + \frac{12}{140} \approx 0.4643.$ iii. The probability that none of them score ball equals $P(\bar{A}\bar{B}\bar{C}) = \frac{18}{140} \approx 0.1286.$ iv. The probability that at least one of them scores ball equals $P(ABC) + P(AB\bar{C}) + P(A\bar{B}C) + P(A\bar{B}C) + P(\bar{A}B\bar{C}) + P(\bar{A}B\bar{C}) + P(\bar{A}B\bar{C}) = \frac{18}{18}$

$$= 1 - P(\bar{A}\bar{B}\bar{C}) = 1 - \frac{18}{140} \approx 0.8714$$

www.AssignmentExpert.com