Answer on Question #56453 – Math – Algebra

Question 1

Which of the following is a root of the polynomial shown below?

$$f(x) = x^3 + 2x^2 - x - 2$$

A: 2

B: 0

C: 3

D: 1

Solution

If x = 1, then $f(1) = 1^3 + 2 \cdot 1^2 - 1 - 2 = 0$.

Answer: D: 1

Question 2

Which of the following represents the set of possible rational roots for the polynomial shown below?

= 0

$$2x^{3} + 5x^{2} - 8x - 10$$
A: { $\pm \frac{1}{2}$, ± 1 , ± 2 , $\pm \frac{5}{2}$, ± 5 , ± 10 }
B: { $\frac{1}{2}$, 1, 2, $\frac{5}{2}$, 4, 5, 10, 20}
C: { $\pm \frac{2}{5}$, $\pm \frac{1}{2}$, ± 1 , ± 2 , $\pm \frac{2}{5}$, $\pm \frac{1}{5}$, $\pm \frac{1}{10}$ }
D: { ± 1 , ± 2 , ± 4 , ± 5 , ± 10 , ± 20 }

Solution

According to the rational root theorem, each rational solution x can be written as a fraction $\frac{p}{q}$, where p is an integer factor of -10 (the constant term of the polynomial) and q is an integer factor of 2 (the leading coefficient).

Answer: A:
$$\{\pm \frac{1}{2}, \pm 1, \pm 2, \pm \frac{5}{2}, \pm 5, \pm 10\}$$

Question 3

Which of the following expresses the possible number of positive real solutions for the polynomial equation shown below?

$$x^3 - 4x^2 - 7x + 28 = 0$$

A: one

B: Three or one

C: Two or Zero

D: Two

Solution

Using Descartes' Rule of Signs, count the number of sign changes: $+x^3 - 4x^2 - 7x + 28 \Rightarrow + - - +$. So, we get two changes in sign, hence there are at most two positive roots. So, there could be two or zero positive roots.

Answer: C. Two or Zero.

Question 4

A polynomial has one root that equals 5 - 7i. Name one other root of this polynomial.

Answer: 5 + 7i.

Question 5

If a polynomial has one root in the form $a + \sqrt{b}$, it has a second root in the form of $a = \sqrt{b}$ **Answer:** $a - \sqrt{b}$.