Answer on Question \#56369 - Math - Analytic Geometry

Question

A circle has its center at $\mathrm{C}(-3,-2)$ and radius square root of 76 . Find the length of its chord bisected at $\mathrm{M}(4,-1)$.

Solution

A radius drawn to the midpoint of a chord is perpendicular to the chord (Two points that are equidistant from the endpoints of a segment lie on the perpendicular bisector of the segment). We find $C M$ using the distance formula:

$$
C M=\sqrt{(4+3)^{2}+(-1+2)^{2}}=\sqrt{50}=5 \sqrt{2} .
$$

$\triangle C M A$ is a right triangle. $C A$ is a radius so $C A=\sqrt{76}$.
Using the Pythagorean Theorem, we find $A M$:

$$
\begin{gathered}
A M^{2}+C M^{2}=C A^{2} ; \\
A M^{2}=C A^{2}-C M^{2} ; \\
A M^{2}=76-50=26 ; \\
A M=\sqrt{26}
\end{gathered}
$$

Since M is a midpoint of $A B$, we have $A B=2 \sqrt{26}$.

Answer: the length of the chord bisected at $(4,-1)$ of the given circle is $2 \sqrt{26}$.

