Answer on Question #56215 – Math – Real Analysis Question

Prove by method of contradiction that α is an irrational number and β is a rational number, then $\alpha+\beta$ is an irrational number.

Proof

Let α be irrational and β be rational. To strive for a contradiction, assume that $\alpha+\beta$ is rational. By definition of rational numbers, $\alpha+\beta=\frac{m}{n}$ for some $m\in\mathbb{Z}, n\in\mathbb{N}$. Also, since β is rational, $\beta=\frac{m_1}{n_1}$, for appropriate numbers $m_1\in\mathbb{Z}, n_1\in\mathbb{N}$. But then $\alpha=\frac{m}{n}-\frac{m_1}{n_1}=\frac{m\cdot n_1-n\cdot m_1}{n\cdot n_1}$ is a rational number, which contradicts with the assumption that α is irrational.