Answer on Question \#55954-Math - Complex Analysis

If $z=\boldsymbol{\operatorname { c o s }} \theta+j \boldsymbol{\operatorname { s i n }} \theta$, prove that when n is a natural number
$\boldsymbol{\operatorname { s i n }} n \theta=\frac{1}{2 j}\left(z^{n}-\frac{1}{z^{n}}\right)$.

Solution

$$
\mathbf{z}=\cos \boldsymbol{\theta}+\boldsymbol{j} \sin \boldsymbol{\theta}=e^{j \theta}
$$

According to Euler's formula:

$$
\begin{aligned}
& e^{j n \theta}=\cos (\boldsymbol{n} \boldsymbol{\theta})+\boldsymbol{j} \sin (\boldsymbol{n} \boldsymbol{\theta}) \\
& e^{-j n \theta}=\cos (-\boldsymbol{n} \boldsymbol{\theta})+\boldsymbol{j} \sin (-\boldsymbol{n} \boldsymbol{\theta})=\cos (\boldsymbol{n} \boldsymbol{\theta})-\boldsymbol{j} \sin (\boldsymbol{n} \boldsymbol{\theta})
\end{aligned}
$$

Subtracting the second formula from the first one and dividing by $(2 j)$ obtain

$$
\sin (\boldsymbol{n} \boldsymbol{\theta})=\frac{e^{j n \theta}-e^{-j n \theta}}{2 j}
$$

On the other hand,

$$
e^{j n \theta}-e^{-j n \theta}=\left(e^{j \theta}\right)^{n}-\left(e^{j \theta}\right)^{-n}=z^{n}-z^{-n}=z^{n}-\frac{1}{z^{n}}
$$

Thus,

$$
\sin n \theta=\frac{1}{2 j}\left(z^{n}-\frac{1}{z^{n}}\right) .
$$

