Answer on QUESTION #55951 – Math – Trigonometry

Prove that
$$\sin(40+x)^*\cos(10+x) - \cos(40+x)^*\sin(10+x) = \frac{1}{2}$$
SOLUTION

First of all we recall a formula of trigonometry:

$$\sin(\alpha)^*\cos(\beta)\cos(\alpha)^*\sin(\beta)=\sin(\alpha+\beta)$$

in our case $\alpha = 40 + x$ and $\beta = 10 + x$

Now apply the formula to our case

$$\sin(40+x)*\cos(10+x)-\cos(40+x)*\sin(10+x)=\sin((40+x)-(10+x))=$$

$$=\sin(40+x-10-x)=\sin(30)=\frac{1}{2}$$

REMARK

The solution is true only in the case where the argument is recorded in degrees. If the argument records in radians, then $\sin(30) = -0.988031$.