ANSWER ON QUESTION \#55857 - Math - CALCULUS

6. For the polynomial $f(x)=1-2 x+5 x^{\wedge 4}$
as
$\mathrm{x} \rightarrow \infty, \mathrm{f}(\mathrm{x}) \rightarrow-\infty$
A: True
B: False

Answer: B, because $5 x^{\wedge} 4 \rightarrow \infty$ as $x \rightarrow \infty$, hence $1-2 x+5 x^{\wedge} 4 \rightarrow \infty$ as $x \rightarrow \infty$.
7. For the polynomial $f(x)=2 x^{\wedge} 4-8 x^{\wedge} 2+7 x-25$
as
$x \rightarrow \infty, f(x) \rightarrow \infty$
A: True
B: False
Answer: A, because $2 x^{\wedge} 4 \rightarrow \infty$ as $x \rightarrow \infty$, hence $2 x^{\wedge} 4-8 x^{\wedge} 2+7 x-25 \rightarrow \infty$ as $x \rightarrow \infty$.
8. What is the maximum number of turns in the graph of.
$\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{\wedge} 3-2 \mathrm{x}^{\wedge} 2+7 \mathrm{x}-25$
Answer: \qquad 2

Solution. We need to find the maximum number of times the slope of the curve changes. A maximum number of turns in the graph of $f(x)$ is equal to the degree of polynomial $f(x)$ minus 1 . Therefore a maximum number of turns in the graph of $f(x)$ is equal to $3-1=2$.
9. Find $f(1)$ if
$f(x)=2 x^{\wedge} 3+x^{\wedge} 2-3 x-1$
Answer: _-1

Solution:

$f(1)=2 \times 1^{3}+1^{2}-3 \times 1-1=2+1-3-1=-1$
10. Find $f(-2)$ if
$f(x)=-x^{\wedge} 3+2 x^{\wedge} 2+x-1$
Answer: _13
Solution: $\mathrm{f}(-2)=-(-2)^{3}+2 \times(-2)^{2}-2-1=8+8-2-1=13$

