Answer on Question \#55823 - Math - Calculus

4. A tennis ball machine serves a ball vertically into the air from a height of 2 feet, with an initial speed of 120 feet per second. What is the maximum height, in feet, the ball will attain? Round to the nearest whole foot.

Solution

$\mathrm{h}(\mathrm{t})$ is height, $\mathrm{v}(\mathrm{t})=\dot{\mathrm{h}}(\mathrm{t})$ is velocity, $\mathrm{a}(\mathrm{t})=\dot{\mathrm{v}}(\mathrm{t})=\ddot{\mathrm{h}}(\mathrm{t})$ is acceleration

$$
v 0=120 \frac{\text { feet }}{\mathrm{s}}, \quad \mathrm{~g}=9,8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=9,8 * 3,28\left(\frac{\text { feet }}{\mathrm{s}^{2}}\right)=32,14 \frac{\text { feet }}{\mathrm{s}^{2}}
$$

As we know $a(t)=$ const $=-g$, so $v(t)=\int a(t) d t=v_{0}-g t\left(v_{0}\right.$ is the initial velocity)
Also $h(t)=\int v(t) d t=\int\left(v_{0}-g t\right) d t=h_{0}+v_{0} t-\frac{\mathrm{gt}^{2}}{2}\left(h_{0}\right.$ is the initial height $)$
$\mathrm{h}\left(\mathrm{t}_{\max }\right)=\mathrm{h}_{\max }$ when $\dot{\mathrm{h}}\left(\mathrm{t}_{-} \max \right)=\mathrm{v}\left(\mathrm{t}_{-} \max \right)=0$, so $0=\mathrm{v}_{0}-\mathrm{gt}_{\max }, \mathrm{t}_{\max }=\frac{\mathrm{v}_{0}}{\mathrm{~g}}$,
$\mathrm{h}_{\text {max }}=\mathrm{h}\left(\mathrm{t}_{\text {max }}\right)=\mathrm{h}_{0}+\mathrm{v}_{0} \mathrm{t}-\left(\frac{\mathrm{g}}{2}\right)\left(\frac{\mathrm{v}_{0}}{\mathrm{~g}}\right)^{2}=\mathrm{h}_{0}+\frac{\mathrm{v}_{0}^{2}}{2 \mathrm{~g}}$ (you can get this much easier, if you know The Law of Conservation of Energy: $\mathrm{mv}^{2}+\mathrm{mg} \Delta \mathrm{h}=$ const, so in this case $\mathrm{mv}^{2}=\mathrm{mg} \Delta \mathrm{h}, \Delta \mathrm{h}=$ $\frac{\mathrm{v}^{2}}{2 \mathrm{~g}}$)

$$
h_{\max }=2+\frac{120^{2}}{2 * 32,14}=226,02 \text { (feet) }
$$

Answer: 226 feet

5. A tennis ball machine serves a ball vertically into the air from a height of 2 feet, with an initial speed of 110 feet per second. After how many seconds does the ball attain its maximum height? Round to the nearest hundredth.

Solution:

$\mathrm{h}(\mathrm{t})$ is height, $\mathrm{v}(\mathrm{t})=\dot{\mathrm{h}}(\mathrm{t})$ is velocity, $\mathrm{a}(\mathrm{t})=\dot{\mathrm{v}}(\mathrm{t})=\ddot{\mathrm{h}}(\mathrm{t})$ is acceleration

$$
v 0=110 \frac{\text { feet }}{\mathrm{s}}, \quad \mathrm{~g}=9,8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=9,8 * 3,28\left(\frac{\text { feet }}{\mathrm{s}^{2}}\right)=32,14 \frac{\text { feet }}{\mathrm{s}^{2}}
$$

As we know $\mathrm{a}(\mathrm{t})=$ const $=-\mathrm{g}$, so $\mathrm{v}(\mathrm{t})=\int \mathrm{a}(\mathrm{t}) \mathrm{dt}=\mathrm{v}_{0}-\mathrm{gt}\left(\mathrm{v}_{0}\right.$ is the initial condition $)$
Also $h(t)=\int v(t) d t=\int\left(v_{0}-g t\right) d t=h_{0}+v_{0} t-\frac{g t^{2}}{2}$
$\mathrm{h}\left(\mathrm{t}_{\text {max }}\right)=\mathrm{h}_{\text {max }}$ when $\dot{\mathrm{h}}\left(\mathrm{t}_{\text {max }}\right)=\mathrm{v}\left(\mathrm{t}_{\text {max }}\right)=0$, so $0=\mathrm{v}_{0}-\mathrm{gt}_{\text {max }}, \mathrm{t}_{\text {max }}=\frac{\mathrm{v}_{0}}{\mathrm{~g}}$,

$$
t_{\max }=\frac{110}{32,14}=3,4225(s)
$$

Answer: 3,42 s.
6. The finishing time for a runner completing the 200-meter dash is affected by the tail-wind speed, s. The change, t, in a runner's performance is modeled by the function shown below:

$$
\mathrm{t}=0.0119 \mathrm{~s}^{2}-0.308 \mathrm{~s}-0.0003
$$

Predict the change in a runner's finishing time with a wind speed of 5 meters/second. Note: A negative answer means the runner finishes with a lower time. Round to the nearest hundredths.

Solution:

$$
\begin{gathered}
\mathrm{t}(\mathrm{~s})=0.0119 \mathrm{~s}^{2}-0.308 \mathrm{~s}-0.0003 \\
\mathrm{t}(5)=0.0119 *\left(5^{2}\right)-0.308 *(5)-0.0003=-1,2428(\mathrm{~s})
\end{gathered}
$$

Answer: -1,24 s, the runner finishes with a lower time.

