## Answer on Question \#55821 - Math - Calculus

7. Describe the Nature of the roots for this equation.
$2 x^{\wedge} 2+5 x-7=0$

A: one real, double root
B: Two complex roots.
C: Two real, rational roots
D: Two real, irrational roots.

## Solution

$2 x^{\wedge} 2+5 x-7=0$
The discriminant:
$D=b^{2}-4 a c=5^{2}-4 * 2 *(-7)=25+56=81$
$\mathrm{x}_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-5 \pm 9}{4} ; \mathrm{x}_{1}=-3.5 ; \mathrm{x}_{2}=1$
Answer. C: Two real, rational roots .
8. Describe the nature of the roots for this equation. $x^{\wedge} 2-2 x+1=0$

A: Two complex roots
B: One real, double root
C: Two real, rational roots
D: Two real, irrational roots

## Solution

$x^{\wedge} 2-2 x+1=0$
$(x-1)^{2}=0$
$\mathrm{X}_{1,2}=1$ - double root
Answer. B: One real, double root
9. $x^{\wedge} 2-4 x+85=0$

A: $\{2+19 i, 2-19 i\}$
B: $\{2+9 i, 2-9 i\}$
C: $\{7+3 i, 7-3 i\}$
D: $\{3+7 i, 3-7 i\}$

## Solution

The discriminant:
$D=b^{2}-4 a c=(-4)^{2}-4^{*} 1^{*}(85)=16-340=-324$
$\mathrm{X}_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{4 \pm 18 i}{2} ; \mathrm{x}_{1}=2+9 \mathrm{i} ; \mathrm{x}_{2}=2-9 \mathrm{i}$
Answer. B: $\{2+9 \mathrm{i}, 2-9 \mathrm{i}\}$
10. A toy company has determined that the revenue generated by a particular toy is modeled by the following equation: $r(x)=11 x-0.025 x^{\wedge} 2$

The variable $x$ is measured in thousands of toys produced, and $r(x)$ is measured in thousands of dollars. What is the maximum revenue the company can earn with this toy?

Give the answer in dollars.

## Solution

The function $r(x)=11 x-0.025 x^{\wedge} 2$ is a quadratic function with $a=-0.025<0$, then maximum will be at the vertex of the parabola:
$\mathrm{X}_{\max }=\frac{-b}{2 a}=\frac{-11}{2 *(-0,025)}=220$
$r_{\max }=11^{*} 220-0,025^{*} 220^{2}=2420-1210=1210$ thousands dollars.

Answer: 1210000 dollars.

