Answer on Question \#55792 - Math - Calculus

Question 1. Let $f(x, y)$ be a real single-valued function of two independent variables x and y, then the partial derivatives of $f(x, y)$ with respect to y is defined as
(A) $\lim d x \rightarrow 0 f(x+d x, y)-f(x, y) / d x$
(B) $\lim d x \rightarrow 0 f(x, y+d y)-f(x, y) / d y$
(C) $\lim d x \rightarrow 0 f(x+d x, y)-f(y, x) / d y$
(D) $\lim d x \rightarrow 0 f(x+d x, y+d y)-f(x, y) / d x$

Solution

The correct answer is "(B) lim dy $\rightarrow 0(f(x, y+d y)-f(x, y)) / d y$ ".
I believe it should be "lim $d y \rightarrow 0$ " instead of "lim $d x \rightarrow 0$ " in (B). Otherwise, there is no correct answer.

Question 2. Let $f(x, y)$ be a real single-valued function of two independent variables x and y, then the partial derivatives of $f(x, y)$ with respect to x is defined as
(A) $\lim d x \rightarrow 0 f(x+d x, y)-f(x, y) / d x$
(B) $\lim d x \rightarrow 0 f(x+d x, y)-f(x, y) / d y$
(C) $\lim d x \rightarrow 0 f(x+d x, y)-f(y, x) / d x$
(D) $\lim d x \rightarrow 0 f(x+d y, y)-f(x, y) / d x$

Solution

The correct answer is " $(A) \lim d x \rightarrow 0(f(x+d x, y)-f(x, y)) / d x$ ".

Question 3. If $f(x, y)=2 x^{\wedge} 3+3 y^{\wedge} 2$, find $f(-1,-2)$

Solution

$f(-1,-2)=2(-1)^{3}+3(-2)^{2}=-2+12=10$

